Теплопроводность бетона. Характеристики тяжелых и легких составов. Свойства газобетонных блоков, керамзитобетонных монолитов, пено- и полистиролбетона

При выполнении мероприятий по строительству зданий или ремонту ранее возведенных построек важно надежно теплоизолировать стены строения. Для уменьшения объема тепловых потерь и снижения затрат на поддержание комфортной температуры важно ответственно подойти к выбору теплоизоляционных материалов и выполнению тепловых расчетов. Решая задачи, связанные с обеспечением энергоэффективности бетонных строений, необходимо учитывать теплопроводность бетона. Этот показатель характеризует способность проводить тепло и является одной из наиболее важных характеристик.

Теплопроводность бетона
Теплопроводность бетонного массива

Как влияет теплопроводность бетона на микроклимат внутри помещения

Из множества строительных материалов, применяемых для возведения зданий, одним из наиболее распространенных является бетон. Среди главных рабочих характеристик материала выделяется коэффициент теплопроводности бетона. На этапе проектирования необходимо предусмотреть применение в процессе строительства теплоизоляционных материалов, позволяющих превратить возведенную железобетонную конструкцию в жилое строение. Ведь важно возвести не только устойчивое, экологически чистое и оригинальное здание, но и создать благоприятные условия для проживания.

Зная теплопроводность бетонного массива, и правильно выбрав теплоизоляционные материалы, можно добиться значительных результатов:

  • существенно сократить тепловые потери;
  • снизить затраты на обогрев помещения;
  • обеспечить внутри здания комфортный микроклимат.

Влияние уровня теплопроводности на внутренний микроклимат выражается простой зависимостью:

  • при возрастании коэффициента, интенсивность тепловой передачи возрастает, и строение, возведенное из материала с такими характеристиками, быстрее остывает и, соответственно, ускоренными темпами нагревается;
  • снижение способности бетонного массива передавать тепло позволяет на протяжении увеличенного периода времени сохранять внутри помещения комфортную температуру, с соответственным уменьшением тепловых потерь.

Комфортный микроклимат внутри здания
Зная теплопроводность бетонного массива можно обеспечить внутри здания комфортный микроклимат
Если подытожить, то степень теплопроводимости бетона является определяющим фактором, влияющим на комфортность жилища. Различные виды бетона отличаются структурой массива, свойствами применяемого наполнителя и, соответственно, степенью теплопроводности. Важно использовать такие марки бетона совместно с утеплителями, чтобы обеспечить надежное удержание бетонным массивом тепла в помещении. Выбор применяемых для строительства материалов производится на проектной стадии.

Взаимосвязь влажности и теплопроводности

Влажность оказывает существенное влияние на способность постройки из бетона пропускать тепло. Повышенное содержание влаги в воздухе уменьшает способность бетонных стен удерживать комфортную температуру. Если поры материала заполняются водой, а не воздухом, значительно повышается риск промерзания помещения в зимний период.

К примеру, пористые бетоны способны проводить тепло на коэффициент 0,14 Вт, тогда как аналогичные материалы, пропитанные водой – уже на 1-3 Вт.

При строительстве помещений теплопроводности следует уделять повышенное внимание, ведь от данной характеристики напрямую зависит не только комфортность нахождения в доме, но и экономия на коммунальных услугах

Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями

Принимая решение об использовании для строительства здания определенной марки бетона или другого строительного материала, следует обращать внимание на следующие характеристики, обеспечивающие энергоэффективность строения:

  • коэффициент теплопроводности железобетона или бетона. Это специальный показатель, характеризующий объем тепловой энергии, которая может пройти через различные стройматериалы за определенный промежуток времени. При снижении величины коэффициента, способность материала проводить тепло уменьшается, а при возрастании показателя – скорость отвода тепла возрастает;
  • тепловое сопротивление строительных конструкций. Этот параметр характеризует свойства стройматериалов препятствовать потерям тепловой энергии. Тепловое сопротивление является обратным показателем, если сравнивать со степенью теплопроводности. При повышенном значении показателя теплового сопротивления стройматериал может применяться для теплоизоляционных целей, а при пониженном – для ускоренного отвода тепла.

Разрабатывая проект будущего здания, и выполняя тепловые расчеты, необходимо учитывать указанные показатели.

Теплопроводность железобетона
Коэффициент теплопроводности материалов

Теплопроводность полусухой машинной стяжки при устройстве водяного тёплого пола

Перепечатка статей, равно как и их отдельных частей, запрещена. Мы хотим оставить за собой право на эксклюзивное размещение данного материала на нашем сайте home-engineering.net. Здесь мы делимся знаниями и опытом, наработанными нашей командой за годы работы в сфере проектирования и монтажа инженерных систем.

→Главная →К списку статей

Введение Фактические данные по теплопроводности традиционных бетонных, цементно-песчаных и полусухих стяжек для пола Что дают нам эти цифры? На сколько потребуется увеличить температуру воды в трубах тёплого пола при применении различных видов стяжек? Что это значит? Выводы

Введение наверх

Полусухая машинная стяжка пола прочно заняла свои позиции в индивидуальном (коттеджи) и массовом (многоэтажные здания) строительстве. У неё есть масса достоинств: скорость монтажа, практически идеально ровная поверхность, минимальный риск образования трещин и т.п. Но, как и у всего в этом мире, у неё есть и недостатки по сравнению с традиционной бетонной или мокрой стяжкой пола: пониженная плотность и прочность. Пониженная по сравнению с тяжёлым бетоном и традиционным цементно-песчаным раствором плотность означает и пониженную теплопроводность. Думающие и глубоко копающие человеки вполне логично поднимают вопросы, связанные именно с теплопроводностью стяжки, в которой будут расположены трубы тёплого пола:

  • Подходит ли полусухая стяжка для водяного тёплого пола?
  • Какова точная величина теплопроводности полусухой машинной стяжки пола?
  • На сколько она отличается от теплопроводности традиционной стяжки?
  • Не скажется ли это негативно на работе отопления тёплым полом?
  • Не приведет ли это к увеличению затрат на эксплуатацию здания? и т.п.

На эти и некоторые другие вопросы мы постараемся ответить в этой статье.

Фактические данные по теплопроводности традиционных бетонных, цементно-песчаных и полусухих стяжек для пола наверх

Давайте начнем с точных цифр. Согласно данным из СНБ 2-04-01-97 Строительная теплотехника:

  • Коэффициент теплопроводности бетона плотностью 2400 кг/м³ на гравии или щебне из природного камня составляет около 1,5..1,8 Вт/мK;
  • Коэффициент Теплопроводности цементно-песчаного раствора плотностью 1800 кг/м³ составляет около 0,6..0,9 Вт/мK.

Конечно, нужно понимать, что эти цифры очень сильно зависят от качества приготовления и укладки смеси, ее влажности и т.п., но дают нам вполне хороший ориентир.

Что касается теплопроводности полусухого раствора, то таких данных в этом СНБ нет, ибо военная тайна никто не знает и никому не нужно. Однако, существует интересный документ: „Исследование теплопроводности полусухой несвязанной цементно-песчаной стяжки. Техническое заключение“. Данное исследование было выполнено аж в Институте и имеет много подписей, и даже печать с кочаном капусты орлом. Согласно результатам данного исследования, теплопроводность (λ — лямбда, коэффициент теплопроводности) образцов полусухой стяжки плотностью около 1500 кг/м³ составляет около 0,4 Вт/мK.

Таблица с результатами испытаний образцов полусухой стяжки.

Т.о., используя методы манипулирования массовым сознанием округления, для удобства будем считать, что:

  • Теплопроводность (коэффициент) стяжки из бетона составляет 1,6 Вт/мK;
  • Теплопроводность стяжки из цементно-песчаного раствора составляет 0,8 Вт/мK;
  • Теплопроводность полусухой стяжки составляет 0,4 Вт/мK.

Что дают нам эти цифры? наверх

Немного начитанный и подозрительный человек тут же скажет: «ВОТ! Вот тут нас и нахлобучивают! Это ж какие потери и убытки…». И будет прав лишь в том, что действительно, теплопроводность полусухой машинной стяжки пола в 2 раза меньше теплопроводности обычной стяжки и в целых 4 раза меньше бетонной. Но что это означает на практике? А с этим уже немного сложнее, чем просто разделить 8 или даже 16 на 4.

Из данного примера следует, что коэффициент теплопроводности фрагмента кладки стены из керамического пустотелого кирпича составляет 0,67 Вт/мK.

Коэффициент теплопроводности материала (λ, Вт/мK) численно равен величине теплового потока в ваттах, который, проходя через слой данного материала толщиной в 1 метр, вызывает падение температуры на этом расстоянии (1 метр) в 1 градус Кельвина. Т.е., чем больше теплопроводность материала, тем больший тепловой поток способен пропустить через себя слой данного материала при заданном на его границах перепаде температур.

Теперь вернемся к нашему конкретному случаю со стяжкой. Чем меньше коэффициент теплопроводности стяжки, тем больший перепад температур необходим между греющими трубами (средней температурой в подаче и обратке тёплого пола) и температурой поверхности пола для передачи одинакового количества тепловой энергии в данное помещение. Больший перепад температур в этом случае не означает автоматически увеличения требуемой энергии, мощности или денег на содержание дома. Путать температуру и энергию = путать мокрое с синим.

На сколько потребуется увеличить температуру воды в трубах тёплого пола при применении различных видов стяжек? наверх

Давайте возьмем конкретный типичный пример из жизни и рассчитаем все интересующие нас величины. Предположим, что у нас есть помещение с температурой воздуха в 21,5°С и удельными теплопотерями в 50 Вт/м². Для данных параметров температура поверхности стяжки будет составлять 26°С (помним заветную цифру в 11 Вт/°С). Сделаем три разных варианта стяжки одинаковой толщины 50 мм над трубами тёплого пола, но выполненных из различных материалов: бетона, цементно-песочного раствора (ЦПР) и полусухого раствора (ПСР). Толщину утепления под трубами тёплого пола примем одинаковой для всех трех вариантов (100 мм XPS). Температура воздуха в помещении этажом ниже также одинакова для всех вариантов и составляет +10°С. Вариант со стяжкой толщиной 50 мм над трубами тёплого пола примерно соответствует случаю с чистовым напольным покрытием в виде керамической плитки, уложенной на клей по стяжке общей толщиной 60 мм.

Три варианта стяжки: из бетона, цементно-песчаного раствора (ЦПР) и полусухого раствора (ПСР) толщиной 50 мм над трубами тёплого пола. Указаны средние температуры теплоносителя в трубах тёплого пола и величины потерь тепла вниз.

Имея требуемую величину теплового потока вверх, толщину материалов и их коэффициенты теплопроводности, вычислим падение температуры на стенке трубы тёплого пола и в толще стяжки при прохождении через них потока тепла. Падение температуры составит: 3,3K для бетонной стяжки, 5,0K для стяжки из ЦПР и 8,0K для полусухой машинной стяжки пола (для всех трёх случаев падение температуры собственно на стенке самой трубы тёплого пола составит порядка 1,5K). Разные падения температуры в толще стяжек приводят к тому, что для поддержания заданного теплового потока от труб тёплого пола необходимо соответственно изменять температуру подачи в тёплые полы. Так, для случая с бетонной стяжкой температура подачи составит около 35°С (на 5°С выше средней температуры теплоносителя), для стяжки из ЦПР — 36°С, а для полусухой машинной стяжки пола — 39°С. Т.е. для компенсации повышенного сопротивления теплопередачи стяжки потребуется поднять температуру подачи в тёплый пол на 3..4°С.

Что это значит? наверх

Увеличение температуры подачи на несколько градусов при применении полусухой машинной стяжки для водяного тёплого пола не представляет в большинстве случаев никакой проблемы до тех пор, пока расчетная температура подачи в тёплый пол не приближается к верхнему допустимому пределу в 50..55°С. Но такие высокие температуры подачи могут требоваться лишь в следующих случаях:

  1. Помещение имеет высокие удельные теплопотери — порядка 100 Вт/м² и выше.
  2. Используется большой шаг укладки трубы тёплого пола — порядка 250 мм и более.
  3. Чистовые покрытия полов имеют высокое сопротивление теплопередаче (ламинат на подложке, толстый ковролин и т.п.), а стяжка имеет толщину больше обычных значений в 40 мм над трубой.

Рассчитаем для примера падение температуры для подобного случая. Стяжка над трубой тёплого пола имеет толщину 70 мм (общая толщина 86 мм), тепловой поток вверх — 75 Вт/м², температура воздуха в помещении 20°С, температура поверхности пола 27°С, чистовое покрытие пола — ламинат 10 мм на подложке 2 мм.

Три варианта стяжки: из бетона, цементно-песчаного раствора (ЦПР) и полусухого раствора (ПСР) толщиной 70 мм над трубами тёплого пола. Указаны средние температуры теплоносителя в трубах тёплого пола и величины потерь тепла вниз при чистовом покрытии пола в виде ламината на подложке и плотности теплового потока вверх 75 Вт/м².

До тех пор, пока температура подачи теплоносителя в тёплый пол не превышает 50..55°С никаких особых проблем для систем отопления на основе газовых настенных и напольных котлов, твердотопливных и электрических котлов не возникает. Даже при использовании газовых конденсационных котлов достаточно трудно оценить реальное снижение КПД котла от температуры подачи в 50°С по сравнению с 40°С (ведь все равно обратка тёплых полов будет иметь температуру порядка 45°С, что ниже точки росы продуктов сгорания природного газа).

Согласно некоторым источникам (см. рис. ниже), падение КПД конденсационного котла при повышении температуры обратного трубопровода с 35°С до 40°С (подача соответственно 45°С и 50°С) составит около 4..5%. Следует, однако, учитывать, что максимальная расчетная температура в подаче отопления будет необходима всего на несколько суток за весь период отопительного сезона.

Зависимость величины КПД конденсационного котла (по верхней теплоте сгорания природного газа) от температуры обратки и тепловой нагрузки.

Увеличение температуры подачи в тёплый пол приводит к увеличению потерь тепла вниз через строительные конструкции перекрытий и полов. Но в случае тёплого пола над эксплуатируемыми помещениями этажом ниже, эти потери тепла не будут бесполезными. В нашем первом расчете выше видно, что увеличение температуры подачи на 4K привело к росту удельных теплопотерь вниз с 8,0 Вт/м² для бетона до 9,5 Вт/м² для полусухой стяжки пола. Использование полусухой машинной стяжки для устройства водяного тёплого пола на площади 100 м² приведет к увеличению теплопотерь вниз для всего дома на 150 Вт, что является несущественным.

Увеличение требуемой температуры подачи в тёплый пол может представлять определенные неудобства при использовании отопления дома от твёрдотопливных котлов с буферными ёмкостями. При этом рабочий диапазон температур между полной зарядкой и разрядкой теплоаккумулятора будет снижаться при повышении температуры подачи в теплый пол. Например, при необходимости повышения температуры подачи в тёплый пол с 45°С до 50°С полезная ёмкость теплоаккумулятора с максимальной температурой загрузки в 85°С снизится на 15%. Это немного, но требует учета при планировании работы систем отопления от твердотопливных котлов.

Наиболее существенное влияние от повышения температуры подачи в систему отопления тёплым полом даже на несколько градусов будет для тепловых насосов, коэффициент тепловой эффективности (COP) которых резко падает при увеличении температуры на их выходе. Чем ниже температура подачи в систему отопления, тем ниже эксплуатационные затраты на содержание дома, отапливаемого тепловым насосом любого типа. К счастью или к сожалению, но количество домов, отапливаемых тёплыми водяными полами от тепловых насосов невелико в общем объеме жилья.

Выводы наверх

Машинная полусухая стяжка пола — интересная технология, имеющая свои достоинства. Применение её при устройстве водяных тёплых полов, в целом, оправдано. Увеличение эксплуатационных затрат на отопление дома при должном подходе и правильном расчете тёплого пола даже за десяток отопительных сезонов может быть незначительным. Особенно аккуратно к планированию устройства отопления дома водяным теплым полом следует подходить в следующих случаях:

  1. Здания с высокими теплопотерями и большой толщиной стяжки пола, в которых, тем не менее, будут использованы финишные напольные покрытия с высоким сопротивлением теплопередаче типа ламината, ковролина, инженерной доски….
  2. Плохое утепление пола, особенно над проветриваемыми подпольями, проездами и т.п. (Но зачем же вообще строить такие дома?)
  3. Отопление дома тёплым полом от теплового насоса.
  4. Отопление дома тёплыми полами от твердотопливного котла с буферной емкостью.
  5. Заказчик-перфекционист.

Если вам необходимо осуществить проектирование и монтаж инженерных систем для вашего дома в Минске и Минском районе; вы хотите получить консультации и выполнить монтаж системы отопления, водоснабжения, канализации, вентиляции, встроенного пылесоса, выполнить электромонтажные работы; сделать необходимые расчеты и подобрать оборудование; либо вы столкнулись с трудностями при реализации ваших идей — мы будем рады вам помочь.

Коэффициент теплопроводности бетона для различных видов монолита

Определяясь с видом бетона, который будет использоваться для постройки жилого дома, следует оценить, как изменяется теплопроводность монолита для разновидностей этого строительного материала. Поможет сравнить теплопроводность бетона таблица, которая охватывает характеристики всех типов бетона. Рассмотрим, как изменяется уровень теплопроводности бетонного массива, который выражается в Вт/м2х ºC для наиболее распространенных разновидностей материала.

Наименьшее значение коэффициента у бетонных композитов с ячеистой структурой:

  • для сухого пенобетона и газонаполненного бетона величина показателя небольшая, по сравнению с другими видами. Она возрастает при повышении плотности материала. При удельном весе 0,6 т/м3 коэффициент равен 0,14, а при плотности 1 т/м3 уже составляет 0,31. При базовой влажности значения возрастают от 0,22 до 0,48, а при повышенной от 0,26 до 0,55;
  • керамзитонаполненный бетон, в зависимости от плотности массива, также имеет различную величину коэффициента, который изменяется пропорционально возрастанию удельного веса. Так керамзитобетон с плотностью 0,5 т/м3 имеет низкий коэффициент, равный 0,14, а при возрастании плотности до 1,8 т/м3 параметр теплопроводности возрастает до 0,66.

Величина коэффициента определяется также используемым для приготовления бетонной смеси наполнителем:

  • для тяжелого бетона плотностью 2,4 т/м3, содержащего щебеночный наполнитель, показатель составляет 1,51;
  • бетон, где в качестве наполнителя используются шлаки, характеризуется уменьшенной величиной теплопроводности, составляющей 0,3–0,7;
  • керамзитобетон, содержащий кварцевый или перлитовый песок, имеет плотность 0,8–1 и, соответственно, уровень теплопроводности, равный 0,22–0,41.

Показатели теплоотдачи
Коэффициент теплопроводности бетона
надежно теплоизолируют возводимое строение. При сооружении стен зданий из бетона, имеющего пористую структуру и пониженный уровень теплопроводности, необходим тонкий слой теплоизолятора. Применение тяжелых марок бетона требует усиленного утепления строения. Для этого укладывается толстый слой теплоизолятора. При подборе материала следует учитывать, что с возрастанием плотности увеличивается теплопроводность бетонного массива.

Коэффициент теплопроводности бетонного раствора

Теплопроводность — это характерная особенность материала передавать тепло от одной своей части другой. Данное свойство является одним из доминирующих при проектировании и возведении объектов. Оно напрямую зависит от состава бетонного раствора и его плотности. Изменение коэффициента теплопроводности может стать причиной потери прочности конструкции.

Термопередача бетона

Что такое теплопроводность и на что она влияет?

Стройматериалы, используемые при сооружении объектов, должны иметь низкую теплопередачу.

1. Определяется количеством тепловой энергии, проходящим за 1 ч через поверхность в 1 м3, способной изменить t воздуха на 1 °С. Метрическая единица измерения — Вт/мК.

2. На данный коэффициент влияет вид используемого заполнителя. Передача тепла у сплошного бетона равна 1,75:

  • с щебнем — 1,3;
  • у пористого — 1,4;
  • у теплоизоляционного — 0,18.

Соотношение теплопроводности и плотности бетона

3. Зависит от нескольких условий:

ОсновныеВторостепенные
состав бетонной смеси;
плотность материала;

качество;

наличие теплоизоляционных заполнителей.

влажность конструкции;
качественное состояние монолита;

температура окружающей среды.

Что такое коэффициент теплопроводности

4. Чем больше вес наполнителя и плотность монолита, тем быстрее происходит теплопередача. Если при возведении здания используется состав с высоким содержанием щебня или гравия, то требуется дополнительное утепление.

ВидКоэффициент, Вт/м*°СХарактеристика
Газобетонный кирпич0,12-0,14Имеет низкий показатель, полученный за счет усиленной поризации раствора.
Пенобетон0,30Сочетает небольшую теплопроводность бетона с хорошими прочностными качествами. Кирпич используется при возведении несущих стен в малоэтажном строительстве.
Керамзитобетон0,23-0,40Сопротивление теплопередаче и прочность позволяют применять при создании зданий в несколько этажей.

Коэффициент проводимости тепла у бетона — величина не постоянная. Зависит от температурно-влажностных параметров окружающей среды, имеет тенденцию к увеличению и уменьшению.

Сохранение тепла стройматериалами

Как измерить, сравнение по теплопроводности с деревом и кирпичом

Определение коэффициента теплопередачи — активный метод контроля путем воздействия на объект тепловым потоком заданной интенсивности.

Производится при помощи специальных приборов:

  • стационарный применяется при лабораторном изучении образцов ограниченного размера;
  • зондовый используют в полевых условиях и для обследования крупногабаритных конструкций из бетона.

Тепломер является работающим в цифровом режиме высокотехнологичным микропроцессорным прибором, позволяющим выполнять обработку данных с привлечением соответствующего программного обеспечения.

Теплопроводность бетонных полов

Измерения проводятся следующим образом:

1. В контрольном образце на расстоянии не менее 7,5 см от края сверлится отверстие, по длине и диаметру не превышающее размеры зонда более чем на 15-20 %.

2. Стержень тепломера для усиления термического контакта с изделием смазывается глицерином или техническим вазелином.

3. Опытную модель со вставленным в нее зондом термостатируют на протяжении 2-4 ч.

4. Устройство подключают к сети, прогревают около 5 мин:

  • фиксируют показания температуры среды в начале испытания;
  • одновременно запускают секундомер и нагревательный элемент тепломера;
  • регистрируют температурные показания в таблицу через 2; 2,5; 3; 4; 5; 6 мин;
  • отключают прибор и повторяют процедуру через 30-40 минут.

5. Для достоверности проводится не менее 3 повторов снятия данных.

Каждый материал имеет свой коэффициент теплопередачи, который самостоятельно замерить сложно. Для бетона М200-300, предприятия вообще не указывают данные. Сравнительная таблица теплопроводности дерева, кирпича и бетона может оказать незаменимую помощь при выборе сырья.

СтройматериалКоэффициент, Вт/м*К
КирпичКремнеземный0,15
Пустотелый0,44
Силикатный0,81
Сплошной0,67
Шлаковый0,58
Пенобетон0,05-0,3
Легкий бетон М300 (200)0,25-0,51
ДревесинаЛипа, дуб, клен, ель, пихта0,15
Доски, фанера0,15
Сосна0,23
Твердые породы древесины и ДСП0,2
Камень1,4

Значения указываются для толщины в 1 метр. Чтобы вычислить данные для других размеров, надо заданный в таблице параметр разделить на нужную величину, выраженную в метрах.

Автор: Валентин Токарев

Статьи по теме:
Как выбрать марку бетонного раствора для плитного фундамента?

Количество мешков пескобетонной смеси в кубометре

Цены бетонирования конструкций с армированием и сборкой опалубки

Какие факторы влияют на коэффициент теплопроводности железобетона

Уровень теплопроводимости бетона, независимо от его марки и наличия в массиве стальной арматуры, зависит от комплекса факторов. Рассмотрим показатели, каждый из которых оказывает определенное влияние на данную характеристику:

  • структура бетонного массива. При создании внутри монолита воздушных полостей процесс передачи тепла через ячеистый массив осуществляется на небольшой скорости и с минимальными потерями. Если подытожить, то увеличенная концентрация ячеек позволяет снизить потери тепла;
  • удельный вес материала. Плотность бетонного массива влияет на его структуру и, соответственно, на интенсивность процесса теплообмена. При возрастании плотности материала увеличивается степень теплопередачи и возрастает объем тепловых потерь;
  • концентрация влаги в бетонных стенах. Бетонный массив, имеющий пористую структуру, гигроскопичен. Частицы влаги, которые по капиллярам просачиваются вглубь бетона, заполняют воздушные поры и ускоряют тем самым процесс теплопередачи.

Выполняя расчеты необходимо учитывать, что с уменьшением влажности материала снижается степень теплопроводимости, и теряется меньшее количество тепла. Применение пористого заполнителя позволяет снизить потери тепла и обеспечить комфортный микроклимат помещения. Стройматериалы с низкой теплопроводностью целесообразно использовать для теплоизоляционных целей. Зная зависимость теплопроводности бетона от его характеристик можно выбрать оптимальный вид материала для постройки стен.

Теплопроводность железобетона
Коэффициент теплопроводности железобетона

Характеристики материалов

В настоящее время на строительном рынке присутствует несколько видов бетонов. Помимо общеизвестных тяжелых составов широко используются так называемые легкие виды бетонов, каждый из которых обладает своими уникальными характеристиками.

Монолитные блоки из пенобетона.

Тяжелые составы

Тяжелыми составами называют монолиты, которые основаны на цементно-песчаной смеси, так называемый пескобетон.

Или растворы, в состав которых кроме цементно-песочной смеси входит тяжелый наполнитель в виде щебня различной фракции.

  • Кроме этого большинство конструкций подобного рода идут с внутренним металлическим армированием, что придает изделию дополнительную прочность и устойчивость к механическим нагрузкам.
  • По сравнению с новыми видами материала теплопроводность железобетона считается самой высокой, она может доходить до 1,5 – 1,7 Вт/мК. Это вызвано тем, что тяжелые составы имеют самую высокую плотность и удельный вес.
  • Воздух, который в большинстве случаев выступает как теплоизолятор, во время заливки изделия по технологии должен быть максимально удален. Как правило, для этого применяется вибропресование. Плюс наличие металлического арматурного каркаса дополнительно увеличивает и без того немалый коэффициент.
  • Данный материал сейчас больше применяется для возведения несущих конструкций. Но если даже проектом предусмотрено использование стеновых железобетонных панелей, то они в обязательном порядке утепляются дополнительным слоем теплоизоляции.
  • Однослойные панели могут применяться при возведении промышленных зданий, в которых не предусмотрено внутреннее отопление помещений. По большей части это заводские цеха металлургических заводов или крытые складские павильоны.

Железобетонные конструкции.

Далее мы будем говорить исключительно о легких видах бетонов, все они появились относительно недавно и являются продуктом современных технологий. Большинство этих материалов специально разрабатывалось с целью энергосбережения. Отличаются они небольшим весом и достаточно низкой теплопроводностью.

Ячеистые материалы.

Газобетонные блоки

Данный материал имеет пористую структуру, низкая теплопроводность газобетонных блоков обуславливается тем, что в качестве теплоизолятора выступает воздух.

Кроме того, технология производства не предусматривает использование таких традиционных материалов как песок и щебень для бетона.

  • Если отойти от инженерных терминов, то газобетон делается по принципу дрожжевого теста. Замешивается состав на основе специальных видов цемента и присадок, после чего в него добавляется разрыхлитель, как правило, алюминиевая пудра. Полученная смесь заливается в форму и «подымается». В результате получаем монолит, по всему объему которого равномерно распределены воздушные поры диаметром от 1, до 3 мм.
  • По сравнению с другими пористыми материалами теплопроводность газобетона можно смело назвать едва ли не самой высокой, в среднем порядка 0,12 – 0,14Вт/мК.

Газобетонные блоки.

Важно: несмотря на такие высокие показатели данный материал, обладает повышенной гигроскопичностью. То есть он способен напитываться влагой, поэтому если вы решили строить дом из газобетонных блоков, нужно будет серьезно подумать над качественной облицовкой.

На видео в этой статье можно проследить строительство дома из газобетона.

Керамзитбетонный монолит

  • Прежде всего, остановимся на том, что же такое собственно керамзит. Этот материал известен уже давно, он представляет собой особым образом обожженную специальную глину, в состав которой введены присадки. После обжига получаем пористый материал в виде гранул.
  • Промышленность выпускает готовые блоки 2 видов, легкие пустотелые и цельнолитые. Первый вид больше используется как теплоизолятор или для возведения легких, одноэтажных строений. Второй предназначен для монтажа несущих конструкций, он обладает большей плотностью и повышенной прочностью.
  • Теплопроводность керамзитобетонного блока предназначенного для утепления, безусловно, выше, но разница при этом не велика. В среднем теплопроводность керамзитобетона равна 0,23 – 0,4 Вт/мК.

Совет: керамзитбетон лучше всего подходит для обустройства стяжки или заливки блоков своими руками. Инструкция по замешиванию и заливке раствора традиционная, пропорции 1 часть цемента, 2 части песка и 3 части керамзита. При этом цена состава будет вполне доступной.

На видео в этой статье показаны принципы строительства из керамзитбетона.

Отношение теплопроводности к весу.

Пенобетон

  • Технология производства этого материала сродни производству газобетона. Но в его состав еще входит песок, плюс благодаря особым присадкам пенобетонные блоки практически не впитывают влагу.
  • Цена этих блоков несколько ниже, нежели у газобетона, хотя и прочность пенобетона также оставляет желать лучшего. Он больше применяется для обустройства дополнительной теплоизоляции или строительства коттеджей не выше 12 м. Теплопроводность пенобетона также несколько выше, нежели у газосиликата, она составляет порядка 0,3 Вт/мК.

Полистиролбетон

Структура полистиролбетона.

  • Теплоизолятором в данном строительном материале выступают гранулы вспененного пенополистирола, в остальном же все традиционно, цемент, песок и присадки. В результате конструкция получается более плотной и прочной.
  • Эти блоки выпускаются с различной плотностью, в результате они также могут использоваться как утеплитель и как несущая конструкция. В виду такого широкого ассортимента теплопроводность полистиролбетона также может колебаться в зависимости от назначения изделий.
  • Так для утеплительных бетонных блоков она составляет 0,05 Вт/мК, далее по мере увеличения плотности может доходить до 0,14 Вт/мК.

Фото легких блоков.

На видео в этой статье показаны некоторые моменты строительства из полистиролбетона.

Теплопроводность бетона и утепление зданий

Решение о теплоизоляции стен возводимых зданий принимается в зависимости от того, из каких видов бетона производится сооружение стен. Бетонные изделия делятся на следующие виды:

  • конструкционные, применяемые для капитальных стен. Отличаются повышенной нагрузочной способностью, увеличенной плотностью, а также способностью ускоренными темпами проводить тепло;
  • теплоизоляционные, используемые в ненагруженных конструкциях. Характеризуются уменьшенным удельным весом, ячеистой структурой, благодаря которой снижается теплопроводность стен.

Таблица теплопроводности
Таблица теплопроводности строительных материалов: коэффициенты
Для поддержания комфортной температуры в помещении можно возводить стены из различных видов бетона. При этом толщина стен будет существенно изменяться. Одинаковый уровень теплопроводности капитальных стен обеспечивается при следующей толщине:

  • пенобетон – 25 см;
  • керамзитобетон – 50 см;
  • кирпичная кладка – 65 см.

Для поддержания благоприятного микроклимата, в рамках мероприятий по энергосбережению, выполняется теплоизоляция строительных конструкций. На стадии разработки проекта специалисты определяют возможные пути потери тепла и выбирают оптимальный вариант утеплителя.

Сравнительный график коэффициентов теплопроводности
Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Основной объем тепловых потерь происходит из-за недостаточно эффективной теплоизоляции следующих частей здания:

  • поверхности пола;
  • капитальных стен;
  • кровельной конструкции;
  • оконных и дверных проемов.

При профессиональном подходе и выборе эффективных утеплителей можно сделать свой дом более комфортным, а также сэкономить значительный объем денежных средств на отоплении.

Основные свойства стеновых блоков

— теплопроводность — прочность — морозостойкость — плотность — звукоизоляция — огнестойкость

Теплопроводность строительных материалов, как ее рассчитывать.

Теплопроводность -свойство передавать теплоту от более нагретых участков к более холодным. Количественно теплопроводность определяется коэффициентом теплопроводности (λ), выражающим количество тепла, проходящее через образец материала толщиной 1м и площадью 1 кв.м при разности температур на противолежащих поверхностях 1оС за один час. На величину теплопроводности оказывают влияние:

  • плотность материала;
  • вид;
  • размеры и расположение пустот. Теплопроводность материала находится в прямой зависимости от:
  • его химического состава;
  • пористости,
  • влажности и температуры;
  • при которой происходит передача тепла. Теплопроводность материала имеет важное значение при устройстве ограждающих конструкций зданий — стен, потолков, полов, крыш. Легкие и пористые материалы мало теплопроводны. Чем выше плотность материала, тем выше его теплопроводность.

Зная коэффициент теплопроводности (λ) материала, несложно рассчитать толщину стен Вашего объекта.

В соответствии со СНиП 23-02-2003 «Тепловая защита зданий» существует нормируемое значение сопротивления теплопередаче ограждающих конструкций, которое зависит от климатических условий данной местности (градусо-суток отопительного сезона) и типа здания.

Для г.Москвы и Московской области этот коэффициент (Rreg)составляет 3-3,1 м2*оС/Вт.

Зная значение λ, толщина стены (δ) рассчитывается по формуле:

δ= Rreg*λ

Пример:

Дано: блок керамзитобетонный стеновой имеет коэффициент теплопроводности

λ=0,17 (Вт/м*оС); Rreg=3 (м2*оС/Вт)

Необходимо определить толщину стены, которую нужно строить из этого материала.

δ= Rreg*λ=3*0,17=0,51 м

Ответ: толщина стены должна быть 51 см.

Прочность — способность материала сопротивляться разрушению под действием нагрузок.

В зданиях и сооружениях материалы испытывают сжатие, растяжение, изгиб, сдвиг, кручение, истирание, а также совокупность этих нагрузок.

Что такое прочность строительных материалов и как ее рассчитывать?

Прочность строительных материалов характеризуется пределом прочности.

Пределом прочности (МПа) называют напряжение, соответствующее нагрузке, вызывающей разрушение образца. Предел прочности различных строительных материалов колеблется от 0,5 до 1000 МПа и более.

Предел прочности определяют опытным путем, используя при этом гидравлические прессы или разрывные машины и стандартные образцы материала.

Для некоторых материалов (бетон, кирпич) предел прочности определяют путем раскалывания цилиндров или призм.

В маркировке стенового блока согласно ГОСТ 6133-99 должна быть указана марка прочности М, которая показывает, какое максимальное давление (кг/см2)он выдерживаает.

Пример:

Стеновой блок имеет марку прочности М35. Это означает, что он выдерживает давление 35 кг/см2 или на блок:

39см х 19см * 35 кг/см2 = 25935 кг или 25,9 тн

Что такое морозостойкость строительных материалов и как ее высчитывать?

Морозостойкость – способность материала в насыщенном водой состоянии выдерживать многократное замораживание и оттаивание без видимых признаков разрушения.

Разрушение происходит в связи с тем, что вода, находящаяся в порах, при замерзании увеличивается примерно на 9%.

Испытание строительных материалов на морозостойкость заключается в цикличном попеременном замораживании и оттаивании в насыщенном водой состоянии и последующем определении потери материалом массы и прочности.

Замораживание и последующее оттаивание образца составляет один цикл; продолжительность цикла не должна превышать 24 часа.

Количество циклов испытания принимают в соответствии с ГОСТом на материал.

Материал считается морозостойким, если после установления числа циклов замораживания и оттаивания в насыщенном водой состоянии прочность его снизилась не более, чем на 15-25%, а потери в массе не превысили 5%.

По морозостойкости камни могут быть следующих марок: F15; F25; F35; F50; F100; F150; F200.

Плотность строительного материала и то, как ее рассчитать.

Плотностью называется масса единицы объема материала.

Чтобы вычислить плотность r (кг/м3), надо знать массу материала m (кг) и его объем V (м3).

r=m/V

Большинство строительных материалов – пористые материалы, т.е. в их объеме помимо твердого вещества находятся воздушные ячейки (поры), заполненные воздухом, плотность которого несравнимо ниже плотности твердого вещества. Поэтому для строительных материалов определяют две характеристики: истинную и среднюю плотности.

Средней плотностью материала называют плотность, когда при расчете берется его полный объем, включая поры и пустоты.

Средняя плотность камней не нормируется, но определяется и указывается в паспорте.

Истинной плотностью материала называют плотность того вещества, из которого состоит материал.

При расчете объем материала вычисляют без пор и пустот. Истинная плотность каждого вещества – постоянная характеристика, которая не может быть изменена, как средняя плотность материала, без изменения его химического состава или молекулярной структуры. В этом и заключается существенное отличие истинной плотности от средней. Для расчета истинной плотности материала его нужно получить в абсолютно плотном состоянии (без пор).

Звукоизоляция строительных материалов нормированные показатели.

Звукоизоляция.

Нормируемые показатели звукоизоляции строительных ограждающих конструкций определяются для каждой их них в зависимости от их назначения в соответствии со СНиП 23-03-2003 «Защита от шума».

Для стен эти показатели составляют от 50 до 62 Дб, для перегородок — от 41 до 50 Дб.

Огнестойкость строительных материалов, признаки и пределы состояний.

Огнестойкость.

Предел огнестойкости строительных конструкций устанавливается по времени (в минутах) наступления признаков предельных состояний:

— потери несущей способности (R);

— потери целостности (Е);

— потреи теплоизолирующей способности (I).

Как производится расчет с учетом коэффициента теплопроводности бетона

Для поддержания комфортной температуры и снижения теплопотерь несущие стены современных зданий выполняются многослойными и включают капитальные конструкции, теплоизоляционные материалы, отделочные покрытия. Каждый слой сэндвича имеет определенную толщину.

Решая задачу по расчету толщины теплоизолятора, необходимо использовать формулу расчета теплового сопротивления – R=p/k, которая расшифровывается следующим образом:

  • R – величина температурного сопротивления;
  • p – значение толщины слоя, указанное в метрах;
  • k – коэффициент теплопроводности железобетона, бетона или другого материала, из которого изготовлены стены.

Используя данную зависимость можно самостоятельно выполнить расчет, используя обычный калькулятор. Для этого необходимо разделить толщину строительной конструкции на коэффициент теплопроводимости бетона или другого материала. Рассмотрим пример расчета для стен толщиной 0,3 метра, возведенных из газобетона с удельным весом 1000 т/м3 и степенью теплопроводности, равной 0,31.

Алгоритм вычислений:

  • Рассчитайте термосопротивление, разделив толщину стен на коэффициент теплопроводности – 0,3:0,31=0,96.
  • Отнимите полученный результат от предельно допустимого для определенной климатической зоны – 3,28-0,96=2,32.

Перемножив коэффициент теплопроводности утеплителя на величину термического сопротивления, получим в результате требуемый размер слоя. Например, толщина листового пенопласта с коэффициентом теплопроводности 0,037 составит – 0,037х2,32=0,08 м.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: