Свойства тампонажных растворов и цементного камня. Способы их регулирования.


Материалы для приготовления тампонажных растворов

Наряду с этим зерна цемента в массе раствора настолько сконцентрированы, что между ними возникают силы взаимного притяжения. Так как на острых краях цементных зерен толщина сольватных оболочек меньше, чем на остальных участках поверхности, то плотность электирического заряда здесь меньше, следовательно, меньше сила отталкивания. Одновременно, в результате химического взаимодействия составляющих цемента, появляются гидратные новообразования. В системе образуется коагуляционная структура. Завершается первый этап (индукционный).

К этому времени пластическая прочность низка, темп нарастания ее медленный и зависит от связывания вод, степени дисперсности цемента в воде и накапливания гидратных новообразований. Такая система тиксотропна, связи между частицами в ней обеспечиваются через гидратные оболочки и поэтому слабы. После механического разрушения системы связи восстанавливаются. Разрушение структуры при перемешивании не приводит к необратимым последствиям.

Второй этап характеризуется возникновением и развитием кристаллизационной структуры трехкальциевогогидроалюмината. Поверхность и объем частиц увеличивается настолько, что возникают молекулярные связи между ними. Этот процесс сопровождается интенсивным нарастанием прочности структуры. Связь между частицами очень прочная и характер разрушения необратим, т.е. разрушение приводит к уничтожению контактов срастания и резкому снижению прочности. Если перемешать раствор в поздний период твердения, то тампонажный камень может не образоваться.

Длительность каждого этапа и скорость перехода первого во второй обусловлены скоростью накопления гидратных новообразований, которая зависит от В/Ц, качества цемента и воды затворения, наличия добавок и реагентов, условий приготовления и цементирования.

При постоянном перемешивании происходит непрерывное разрушение образующейся структуры с увеличением концентрации мельчайших частиц продуктов гидратации. Это интенсифицирует процесс структурообразования. В результате сопротивление перемешиванию возрастает и в некоторый момент происходит лавинообразное нарастание сопротивления.

Время от затворения до этого момента называется временем загустевания цементного раствора.

Превращение цементного раствора в камень сопровождается контракцией – сокращением суммарного объема цемента и воды в процессе гидратации. Это обусловлено перестройкой кристаллических решеток исходных минералов клинкера из атомных в молекулярные при их гидратации. Внешне контракция проявляется поглощением воды или газа, находящейся в контакте с твердеющим цементным раствором. При полной гидратации цементных зерен поглощение прекратится. Максимально количество поглощенной воды составляет 7-9 мл на 100 г и зависит от активности цемента.

Деформации цементного камня

При неограниченном поступлении воды извне в поровое пространство цементного камня в процессе твердения наблюдается некоторое увеличение внешнего объема, называемое набуханием.

Опорожнение пор цементного камня приводит к уменьшению объема камня, называемому усадкой. Усадка связана с капиллярными явлениями, сжатием слоистых минералов при удалении межслоевой воды.

Самопроизвольное расширение – увеличение внешнего объема цементного камня, превышающее по величине естественное набухание. Для тампонажных цементов усадка нежелательна, а определенное увеличение объема при затвердевании весьма полезно. Для получения расширения необходимо создать условия, способствующие возникновению дезориентированных напряжений, которые способны вызвать равномерную раздвижку элементов структуры цементного камня. Для создания собственных напряжений в состав цемента вводят расширяющие добавки, которые, участвуя в химических реакциях с водой, веществом цементного камня или между собой, вызывают образование и рост кристаллов в порах структуры камня. Кристаллизационное давление роста этих кристаллов и вызывает раздвижку элементов структуры цементного камня.

Многие расширяющие цементы содержат добавки, из которых в порах цементного камня образуется эттрингит. Этот минерал, образуясь в процессе коррозии, вызывает разрушение камня. Когда же эту реакцию используют для получения управляемого процесса расширения, то расширяющую добавку диспергируют и равномерно распределяют в цементном порошке. Расширяющая добавка – смесь сульфата кальция, алюмината кальция и гидроксида кальция (гидросульфоалюминат кальция) – это и есть эттрингит.

⇐ Предыдущая4

Рекомендуемые страницы:

буровые растворы / Тампонажные растворы

Общие сведения о буровых тампонажных растворах

Тампонажный раствор (ТР) –

это гетерогенная полидисперсная система, способная в течение некоторого времени переходить из вязко-пластичного состояния в твердое как на воздухе, так и в жидкости.

Дисперсная фаза ТР представлена тампонажным цементом (ТЦ),

который состоит
из вяжущего вещества (ВВ) и добавок (Д)
к нему. Добавки к ВВ могут быть химически активными (ХА) и инертными (И).

Дисперсионная среда или жидкость затворения (ЖЗ) ТР

чаще всего представлена водой, реже водными высоко концентрированными растворами солей и углеводородными жидкостями.

ЖЗ может содержать в растворенном виде химические реагенты, предназначенные для регулирования свойств ТР и тампонажного камня

(ТК). ТК – искусственное твердое тело, образующееся при затвердевании ТР.

Вводимые в ЖЗ химические реагенты по функциональному назначению делятся на следующие 4 группы: ускорители схватывания и твердения (УС); замедлители схватывания и твердения (ЗС); понизители фильтрации (ПФ); пластификаторы или разжижители (Пл).

Отношение массы дисперсионной среды к массе дисперсной фазы в единице объема ТР называется водоцементным отношением и обозначается В/Ц.

1.1. Функции тампонажных растворов

Основными функциями, выполняемыми ТР при сооружении скважин, являются следующие:

  • закрепление обсадных колонн и защита их от коррозионного воздействия пластовых флюидов;
  • изоляция друг от друга и от дневной поверхности пластов, содержащих различные виды флюидов (вода, нефть, газ) или один вид флюида с разными свойствами;
  • создание искусственных забоев и разделительных пробок или перемычек в стволе скважины с целью забуривания нового ствола, перехода на вышележащий объект, ликвидации проявлений, консервации скважины и др.;
  • ликвидация поглощений бурового раствора;
  • закрепление стенок скважин в потенциально неустойчивых породах.

1.2. Требования, предъявляемые к тампонажному раствору

ТР должен удовлетворять следующим требованиям:

  • легко прокачиваться цементировочными агрегатами в течение времени, необходимого для транспортирования его в заданный интервал скважины;
  • обладать минимальной фильтрацией для сохранения высокой проницаемости приствольной зоны продуктивного пласта и предотвращения преждевременного загустевания при течении в затрубном пространстве;
  • быть седиментационно устойчивым с тем, чтобы в состоянии покоя в нем не образовывались каналы, заполненные дисперсионной средой;
  • быть химически инертным по отношению к металлу, горным породам, пластовым флюидам и буровому раствору;
  • по окончании транспортирования в заданный интервал скважины максимально быстро превращаться в ТК;
  • легко смываться с технологического оборудования;
  • быть нетоксичным.

1.3. Требования, предъявляемые к тампонажному камню

ТК должен удовлетворять следующим требованиям:

  • быть высоко эластичным (трещиностойким) для предотвращения его разрушения при динамических нагрузках, в частности, при перфорации;
  • быть коррозионно- и термостойким;
  • обладать хорошей сцепляемостью (адгезией) с металлом и горными породами, слагающими стенки скважины;
  • не давать усадки при твердении;
  • быть практически непроницаемым для жидкостей и газов;
  • быть достаточно прочным и в то же время легко разбуриваться.

2. Краткая характеристика основных вяжущих веществ

В составе ТЦ качестве ВВ, обеспечивающих затвердевание тампонажных растворов, применяются следующие:

  • портландцемент;
  • глиноземистый цемент;
  • шлаковый цемент;
  • известково-кремнеземистый цемент;
  • гипс;
  • магнезиальный цемент;
  • смеси различных минеральных ВВ;
  • органические ВВ (синтетические смолы).

2.1. Портландцемент

Основной частью портландцемента являются клинкерные минералы

, получаемые искусственным путем при обжиге (Т ≈ 1450 ºС) смеси известняка с глиной. При этом состав смеси подбирается таким образом, чтобы в ней содержалось строго определенное количество следующих оксидов:

  • кальция СаО (С)*

    — 64 … 68 % (известь);

  • кремния SiO2 (S)*

    — 19 … 23 % (кремнезем);

  • алюминия Al2O3 (A)*

    — 4 … 8 % (глинозем);

  • железа Fe2O3 (F)*

    — 3 … 6 %.

* С,
S,A,F– сокращенные обозначения оксидов, принятые в химии цементов.
Оксид кальция обладает щелочными свойствами, а оксид кремния – кислотными. Оксиды алюминия и железа являются амфотерными, но в присутствии оксида кальция проявляют кислотные свойства.

Источником щелочного оксида СаО является известняк СаСO3, а кислотных оксидов (SiO2, Al2O3, Fe2O3) – глина.

Чаще всего используют каолинитовые глины, основу которых составляет минерал каолинит

Al2 [Si2O5] (OН)4

или в принятом в химии цементов написании

Al2O3 · 2SiO2 · 2Н2О.

Оксид железа Fe2O3 содержится в глине в виде примеси.

Строго дозированную смесь известняка с глиной обжигают во вращающихся печах. При обжиге смесь доводят до частичного расплавления (спекания). Продукт обжига имеет вид гранул размером до 30 мм и называется клинкером.

По мере роста температуры в сырьевой смеси известняка с глиной происходят следующие основные процессы (реакции).

При температуре свыше 100 ºС начинается разложение глины на составляющие ее оксиды и воду, при этом происходит испарение последней. Заканчивается процесс разложения глины при температуре 600 ºС.

Примерно при этой же температуре (≈ 600 ºС) известняк начинает разлагаться на CaO и CO2, последний улетучивается в атмосферу.

По мере дальнейшего повышения температуры начинают протекать реакции между щелочным оксидом кальция и кислотными оксидами кремния, алюминия и железа с образованием соответствующих солей (силикатов, алюминатов, ферритов и алюмоферритов кальция).

Вначале при менее высокой температуре в реакцию с оксидом кальция вступают оксиды алюминия и железа, в результате чего при температуре порядка 1200 ºС образуется четырехкальциевый алюмоферрит

4CaO · Al2O3 · Fe2O3 (C4AF).

Поскольку в сырьевой смеси оксида алюминия содержится больше, чем может быть связано с оксидом кальция и оксидом железа при получении четырехкальциевого алюмоферрита, то его остаток, продолжая связывать оксид кальция, в конечном итоге примерно при той же температуре (1200 ºС) приводит к образованию трехкальциевого алюмината

3CaO · Al2O3 (C3A).

Присоединение оксида кальция к оксиду кремния начинается при 600 ºС и заканчивается при температуре 1250 ºС с образованием двухкальциевого силиката

2CaO · SiO2 (C2S).

Сырьевая смесь содержит оксида кальция больше, чем это требуется для образования четырехкальциевого алюмоферрита, трехкальциевого алюмината и двухкальциевого силиката. Этот избыток оксида кальция необходим для получения важнейшего из минералов клинкера – трехкальциевого силиката

3CaO · SiO2 (C3S).

Для получения трехкальциевого силиката температуру повышают до 1420 … 1470 ºС. После того как почти все количество оксида кальция оказывается связанным, обжигаемую смесь быстро охлаждают. При этом часть расплава не успевает закристаллизоваться и застывает в виде стеклообразной массы (клинкерное стекло).

Состав клинкера:

  • трехкальциевый силикат C3S;
  • двухкальциевый силикат C2S;
  • трехкальциевый алюминат C3A;
  • четырехкальциевый алюмоферрит C4AF;
  • клинкерное стекло.

Все клинкерные минералы содержат примеси (оксиды магния, марганца, калия, натрия, титана, фосфора, сурьмы, хрома и др.), которые существенно изменяют их кристаллическую структуру и свойства.

Содержание примесей в клинкерных минералах может достигать следующих значений: в C3A
до 13 %, вC4AFдо 10 %, вC2Sдо 6 %, вC3Sдо 4 %.
В портландцементном клинкере трехкальциевый силикат содержит примеси оксидов магния, алюминия, железа, хрома и в такой разновидности

называется
алитом,
а двухкальциевый силикат существует в так называемой β – форме, содержит примеси оксидов марганца, хрома, серы, фосфора и называется
белитом.
Хороший клинкер должен содержать не менее 75 % алита и белита, в том числе не менее 55 % алита.

Алит

придает портландцементу главные его положительные качества как вяжущего вещества: быстрое твердение при умеренно быстром схватывании.

Медленная гидратация белита обеспечивает долговечность тампонажного камня в результате залечивания появившихся в процессе его твердения микроповреждений.

Портландцемент получают помолом клинкера с обязательным добавлением к нему 3 … 7 % гипса (в виде природного гипсового камня, содержащего 65 … 90 % сульфата кальция CaSO4 · 2H2O) для регулирования скорости схватывания тампонажного раствора и повышения прочности тампонажного камня.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: