Устранение причин деформаций и повреждений в несущих конструкциях зданий и сооружений


Усадка свежеуложенного бетона

Усадка свежеуложенного бетона происходит в ранний период твердения вследствие пластической усадки. Основная причина – влажностная: усадка бетона происходит при изменении влажности, когда бетонная смесь находится в пластичном состоянии.

Пластическая (первичная) усадка

• развивается в первые часы (4-6 часов) после укладки бетонной смеси – с момента окончания уплотнения бетонной смеси до того момента, когда начинается структурообразование. После этого периода пластическая усадка не учитывается.

• величина пластической усадки бетона может составлять до 3 мм/м – размер деформации пропорционален размерам испарившейся жидкости;

• ширина раскрытия трещин от пластической усадки может достигать 1-2 мм.

Причина пластической усадки – уход воды из залитой смеси. Может возникнуть из-за испарения воды в окружающую среду или выхода воды из цементного молочка через опалубку (поглощение влаги опалубкой) или в основание (в грунт).

Особенно актуально в сухую жаркую погоду (при t ≥ 25°С в тени в 13-00 часов и относительной влажность менее 50%). Усугубляет пластическую усадку ветер.

Испарение воды с наружной поверхности твердеющего на воздухе бетона приводит к тому, что упрочнение и усадка протекают неравномерно по толщине массива бетона, а это вызывает появление на наружной поверхности волосных усадочных трещин.

Пластические деформации наиболее интенсивно развиваются сразу после укладки и уплотнения бетонной смеси и уже через 30-90 мин затухают.

Величина пластической усадки зависит от состава бетонной смеси: она значительно снижается при уменьшении ее водосодержания. Чем жестче бетонная смесь, тем меньшую она имеет величину пластической усадки. Чем пластичней бетонная смесь, тем больше эта величина.

Также пластическая усадка снижается при создании жесткого «скелета» крупного заполнителя, при применении водоудерживающих тонкомолотых добавок.

Поверхностные трещины при пластической усадке представляют собой волосяные довольно прямые трещины длиной 50-750 мм. Они часто располагаются перпендикулярно рабочей арматуре. Иногда несколько трещин образуются параллельно друг другу на расстоянии 50-80 мм. Трещины, как правило, неглубокие, и редко проникают ниже верхней части защитного слоя бетона.

Есть мнение: «Если трещины неглубокие и не приводят к разрушению поверхности бетонной конструкции, в этом случае они относительно безопасны».

Это не так!

Трещины от пластической усадки свидетельствуют о том, что бетон в раннем возрасте был подвергнут обезвоживанию, то есть, из него уходила вода. Пластическая усадка – это результат интенсивной потери, как правило испарения, воды с поверхности бетона (более 200 г/м2ч).

Потеря воды затворения снижает прочность:

10% – до 10%;

20% – до 30%;

30% – до 50%.

Это невосполнимые потери прочности бетона. Потом, если этот бетон даже утопить и держать его всегда под водой, он свою прочность не восстановит.

Морозостойкость и водонепроницаемость при проявлениях пластической усадки снижаются в несколько раз. То есть, если в проекте заложен бетон марки по морозостойкости F200, то в результате потери воды в лучшем случае получится бетон F50.

Существуют методы восстановления прочности и морозостойкости, однако они значительно удорожают стоимость конструкции (стоимость возрастает на порядок, то есть примерно в 10 раз).

К тому же трещины могут быть более глубокими и даже проходить конструкцию насквозь. Ширина трещин может достигать 2-3 мм.

Строительные нормы не допускают никаких трещин на монолитных железобетонных конструкциях, за исключением усадочных шириной раскрытия до 0,1 мм.

При образовании пластических трещин ни о какой прочности, а тем более долговечности конструкции говорить не приходится. В первую же зиму в трещины заходит вода, которая при морозах начинает расширяться, и к весне эти трещины значительно увеличиваются в размерах.

Защита от испарения воды в окружающую среду: первичный уход – не позднее 10 мин с момента окончания уплотнения бетонной смеси. Необходимо защитить свежеуложенный бетон от испарения, то есть, от обезвоживания. Продолжительность – до достижения бетоном прочности не менее 1,5 МПа, далее – влажностный уход, увлажнение бетонного элемента).

Существует два наиболее применяемых варианта защиты бетонной смеси от испарения:

• укрытие водонепроницаемой пленкой. Не просто укрытие, а прикатка пленки, чтобы она плотно соприкасалась с поверхностью и защищала ее.

• нанесение на свежеуложенную поверхность пленкообразующих полимеризующихся составов. Они за несколько минут образуют на поверхности пленку, которая также эффективна, как и пленка, нанесенная обычным образом.

Для минимизации процесса выхода воды из цементного молочка через опалубку или основание, прежде всего, нужно правильно установить опалубку, гидроизолировать ее, устроить подушку из тощего бетона для монолитного фундамента, обеспечить оптимальные условия для схватывания и твердения бетонной смеси до набора критической прочности (50-70% от марочной), исключив её обезвоживание.

Дефекты и повреждения строительных конструкций

Александр Васильев, к.т.н, доцент Белорусского государственного университета транспорта, Гомель), член технического комитета по стандартизации в области архитектуры и строительства
Одним из наиболее часто встречающихся видов дефектов и повреждений каменных, бетонных и железобетонных элементов зданий и сооружений являются трещины. Различают трещины, проявившиеся в железобетонных элементах в процессе изготовления, транспортировки и монтажа, и трещины от эксплуатационных нагрузок и воздействия окружающей среды.

К появившимся в доэксплуатационный период относятся трещины:

  • усадочные, вызванные быстрым высыханием поверхностного слоя бетона и сокращением объема, а также трещины от набухания бетона;
  • возникшие из-за неравномерного охлаждения бетона;
  • вызванные большим гидратационным нагревом при твердении бетона в массивных конструкциях;
  • технологического происхождения, возникшие в сборных железобетонных элементах в процессе изготовления, доля которых в общем количестве дефектов в сборных железобетонных конструкциях достигает 60%;
  • в сборных железобетонных элементах силового происхождения, вызванные нарушением правил складирования, транспортировки и монтажа, при которых конструкции подвергались силовым воздействиям от собственного веса по схемам, не предусмотренными проектом.

Трещины, появившиеся в эксплуатационный период, можно разделить на следующие виды:

  • возникшие в результате температурных деформаций из-за нарушений требований устройства температурных швов или ошибок расчета статически неопределимой системы на температурные воздействия;
  • вызванные неравномерностью осадок грунтового основания, что может быть связано с нарушением требований устройства осадочных деформационных швов, аварийным замачиванием грунтов, проведением земляных работ, в непосредственной близости от фундаментов без обеспечения специальных мер;
  • силовыми воздействиями, превышающими способность железобетонных элементов воспринимать растягивающие напряжения.

С точки зрения напряженно-деформированного состояния конструкции по влиянию на несущую способность различают трещины:

  • указывающие на аварийное состояние конструкции;
  • увеличивающие водопроницаемость бетона (в резервуарах, трубах, стенах подвала);
  • снижающие долговечность конструкции из-за интенсивной коррозии арматуры (бетона);
  • не вызывающие опасений в надежности конструкции.

Механизмы разрушения структуры бетона

Разрушение бетона начинается с разрушения отдельных элементов его структуры, приводя впоследствии к разрушению более крупных структурных объемов.

Можно выделить два исходных механизма разрушения:

  • отрывной,
  • сдвиговый.

Отрыв и сдвиг могут происходить с разрывом зерен заполнителя. Внутризерновые и межзерновые механизмы являются основными в современной статистической теории прочности бетона. Однако под зернами в этом механизме понимают не зерна крупного заполнителя, а некоторые ячейки в структуре бетона, окруженные дефектами, которые могут и не содержать зерен крупного заполнителя. В чистом виде отрывной механизм разрушения реализуется при растяжении, при этом отдельные трещины отрыва, объединяясь в одну, образуют магистральную трещину разрушения.

Чисто сдвиговой механизм разрушения встречается редко, в основном при высоких уровнях трехосного сжатия. В остальных случаях преобладают различные смешанные отрывно-сдвиговые механизмы разрушения:

  • зигзаг трещины;
  • ветвления зигзага трещины с включениями клиновидных элементов;
  • в виде часто расположенных трещин отрыва пересекаемых трещиной сдвига;
  • тонкие части бетона между трещинами, которые могут разрушаться от потери устойчивости.

Возможны и другие механизмы разрушений.

Магистральная трещина может включать на своем пути различные локальные механизмы разрушения. Обычно чем сложнее и разнообразнее механизм разрушения, тем большими деформациями это разрушение сопровождается. Такие механизмы свойственны сжатию. Процесс разрушения бетона, таким образом, представляется как процесс прогрессирующего разрушения сплошности.

Основные причины появления трещин

Наиболее характерными причинами, вызывающими появление трещин в железобетонных конструкциях, являются:

  • перегрузка конструкции, вызывающая перенапряжение сечений элементов или большие деформации;
  • местная перегрузка участков или сечений конструкций от сосредоточенных сил, передающихся на небольшую зону конструкции;
  • усадка материалов при высокой температуре и малой влажности, особенно в период изготовления;
  • нарушение сцепления арматуры с бетоном;
  • коррозия арматуры;
  • резкие перепады температуры, в том числе полив раскаленных конструкций водой;
  • низкая прочность материалов;
  • нарушения при армировании конструкций: большой шаг стержней, недостаточная анкеровка и т. д.;
  • многократные намокания и промерзания конструкций. Попадание воды в каналы конструкций с последующим ее замерзанием, например, в многопустотные плиты перекрытий;
  • коррозионное растрескивание в агрессивной среде;
  • динамические воздействия, вибрация, колебания, удары, взрывы и т. д.;
  • резкие перепады сечений в конструкциях, вырезы, отверстия;
  • механические повреждения;
  • биологические повреждения.

Основные характерные трещины в железобетонных элементах

Исследуя характер распространения и раскрытия видимых трещин, в большинстве случаев можно определить причину их образования, а также оценить техническое состояние конструкции.

Необходимо отметить, что в зависимости от категории трещиностойкости, связанной с условиями эксплуатации, видом (классом) арматуры, напряженным состоянием сечений (растяжение, сжатие) и продолжительностью раскрытия, предельно допустимая ширина раскрытия трещин в условиях неагрессивной среды колеблется от acrc < 0,1 до acrc < 0,4 мм. Для некоторых типов конструкций образование трещин вообще не допускается.

Различают трещины, проявившиеся в железобетонных конструкциях в процессе изготовления, транспортировки и монтажа, и трещины от эксплуатационных нагрузок и воздействия окружающей среды.

Трещины от силового воздействия обычно располагаются перпендикулярно действию главных растягивающих напряжений.

Усадочные трещины в плоских конструкциях распределяются хаотично по объему, а в конструкциях сложной конфигурации концентрируются в местах элементов (узлы ферм, сопряжения полки и ребер в плитах, двутавровых балках и т. д.).

Трещины от коррозии проходят вдоль коррозирующих арматурных стержней.

Характерными трещинами, возникающими в изгибаемых элементах – балках, являются:

  • трещины, перпендикулярные (нормальные) к продольной оси;
  • трещины вследствие появления растягивающих напряжений в зоне действия максимальных изгибающих моментов,
  • наклонные к продольной оси, которые вызваны главными растягивающими напряжениями в зоне действия существенных перерезывающих сил и изгибающих моментов.

Нормальные трещины имеют максимальную ширину раскрытия в крайних растянутых волокнах сечения элемента.

Наклонные трещины начинают раскрываться в средней части боковых граней элемента – в зоне действия максимальных касательных напряжений, а затем развиваются в сторону растянутой грани.

Раздробление бетона сжатой зоны сечений изгибаемых элементов указывает на исчерпание несущей способности конструкции.

Трещины в балках с обычным армированием

Характерным для балок является образование нормальных (вертикальных) и наклонных (косых) трещин на боковой поверхности. Причем нормальные трещины возникают в зоне действия наибольших изгибающих моментов, а наклонные – наибольших касательных напряжений, вблизи опор.

Картина трещинообразования балок в основном зависит от расчетной схемы, вида поперечного сечения и напряженного состояния.

Нормальные трещины с шириной раскрытия более 0,5 мм обычно свидетельствуют о перегрузке балки или недостаточном ее армировании продольной рабочей арматурой.

Наклонные трещины, особенно в зоне анкеровки рабочей продольной арматуры, считаются наиболее опасными, т. к. могут привести к внезапному обрушению балки.

Трещины в сжатых элементах

Появление продольных трещин вдоль арматуры в сжатых элементах свидетельствует о разрушениях, связанных с потерей устойчивости (выпучиванием) продольной сжатой арматуры из-за недостаточного количества поперечной (косвенной) арматуры.

Наиболее часто трещины и отслаивание бетона вдоль арматуры железобетонных элементов являются результатом коррозионного разрушения арматуры. В этих случаях происходит нарушение сцепления продольной и поперечной арматуры с бетоном.

Продольные трещины вдоль арматуры с нарушением сцепления ее с бетоном могут быть вызваны и температурными напряжениями при эксплуатации конструкций с систематическим нагревом свыше 300 °C или после действия пожара.

Характер трещинообразования ствола железобетонной колонны главным образом зависит от эксцентриситета приложения нагрузки и ее характера. Кроме того, заметное влияние на картину трещинообразования в колоннах оказывают технологические параметры: прочность бетона на сжатие, качество армирования, условия твердения и др.

При больших эксцентриситетах в растянутой зоне сечения могут образовываться широко раскрытые трещины, свидетельствующие о перегрузке колонны или ее недостаточном армировании. При малых эксцентриситетах появляются вертикальные трещины, являющиеся следствием перегрузки колонны или низкого класса бетона. Появление вертикальных силовых трещин часто провоцируется усадочными трещинами, совпадающими с ними по направлению.

Трещины в стропильных фермах

Трещинообразование в стропильных фермах обусловлено особенностью их статической работы как плоских стержневых конструкций. Соединение элементов фермы в узлах создает предпосылки для концентрации в них разнородных по знаку и характеру напряжений: сжимающих, растягивающих, касательных. В результате концентрации напряжений узлы подвержены наиболее интенсивному трещино-

образованию и требуют значительного расхода арматуры. Большие растягивающие усилия в нижнем поясе приводят к появлению сквозных вертикальных трещин, а сжимающие усилия в верхнем поясе – к появлению несквозных горизонтальных трещин.

Причинами появления наклонных трещин опорного узла являются:

  • низкий класс бетона по прочности, недостаточное количество поперечной арматуры; большой шаг стержней, малый диаметр арматуры;
  • недостаточное преднапряжение продольной арматуры, проскальзывание ее в зоне заанкеривания, недостаточное количество поперечной арматуры;
  • нарушение анкеровки преднапряженной арматуры, низкий класс бетона по прочности, недостаточная прочность бетона на момент обжатия.

Лучеобразные вертикальные трещины образуются при недостаточном косвенном армировании от усилий обжатия преднапряженной арматуры.

Горизонтальные трещины свидетельствуют об отсутствии косвенного армирования (сетки, замкнутые хомуты) в зоне заанкеривания преднапряженной арматуры.

Продольные трещины являются следствием недостаточного косвенного армирования узла поперечными стержнями (сетками).

Причинами появления трещин, перпендикулярных оси элементов фермы, являются:

  • недостаточное заанкеривание рабочей арматуры растянутого элемента в узле фермы, слабое косвенное армирование узла;
  • недостаточное преднапряжение арматуры нижнего пояса, перегрузка фермы.

Продольные трещины в сжатых элементах образуются из-за низкого класса бетона по прочности, перегрузки фермы.

Монтажные трещины свидетельствуют об изгибе из плоскости фермы при монтаже, перевозке, складировании.

Нормальные трещины в растянутых элементах образуются от перегрузки фермы, смещения арматурного каркаса относительно продольной оси элемента; трещины свидетельствуют об отколе лещадок бетона.

Трещины опорного узла ферм по своей природе близки к трещинам на опорах балок. Появление горизонтальных трещин в нижнем напряженном поясе свидетельствует об отсутствии или недостаточности поперечного армирования в обжатом бетоне. Нормальные (перпендикулярные к продольной оси) трещины появляются в растянутых стержнях при необеспеченности трещиностойкости элементов. Причем следует обратить внимание на то обстоятельство, что снижение внешней нагрузки на ферму уменьшает растягивающие усилия в нижнем поясе и приводит к закрытию трещин, но при этом может вызвать увеличение раскрытия трещин. Появление повреждений в виде лещадок свидетельствуют об исчерпании прочности бетона на отдельных участках сжатого пояса или на опорах.

Трещины в плитах перекрытия и сборных панелях перекрытий

Перекрытия промышленных предприятий работают в сложных условиях, испытывая технологические перегрузки, ударные и вибрационные воздействия, разрушающее влияние технических жидкостей и других агрессивных сред, что приводит к их быстрому износу, а следовательно, и появлению трещин. Для плит перекрытий с различным соотношением сторон характерно развитие трещин силового происхождения на нижней растянутой поверхности плит. При этом бетон сжатой зоны может быть не нарушен. Смятие бетона сжатой зоны указывает на опасность полного разрушения плиты.

Характер трещин, обусловленных силовым воздействием, зависит от статической схемы плиты перекрытия: характера действующей нагрузки, способа армирования и соотношения пролетов. При этом трещины располагаются перпендикулярно главным растягивающим напряжениям. Причинами широкого раскрытия «силовых» трещин обычно являются перегрузка плиты, недостаточное количество рабочей арматуры или неправильное ее размещение (смещение к нейтральной оси).

Одним из наиболее часто используемых железобетонных элементов являются плиты пустотного настила типа ПК.

Силовые трещины в многопустотных панелях свидетельствуют о недостаточной прочности по нормальному сечению.

Сборные ребристые плиты перекрытий (покрытий) типов П, 2 Т представляют собой пространственную конструкцию, объединяющую балки (ребра) и плиту. Для плит серий 1.865, 1.465 характерно наличие «вутов» на участках перехода продольных ребер в поперечные. Характер образования трещин в них практически не отличается от ранее рассмотренных балок и плит.

Однако следует заметить, что из-за сложности конструктивной формы плит, насыщенности арматуры в них при изготовлении часто встречаются и технологические дефекты в виде щеле-образных раковин и усадочных трещин. К ним относятся:

  • трещины, идущие вдоль арматурных стержней и возникающие от разрыва бетонной смеси при вибрировании;
  • продольные щелеобразные раковины под арматурными стержнями от зависания бетонной смеси;
  • трещины от температурной деформации формы при пропаривании;
  • усадочные трещины при жестком режиме тепловлажностной обработки, высоком расходе вяжущего, большом водоцементном отношении.

Трещины в железобетонных элементах, вызванные огневым воздействием

Нагрев железобетонных конструкций при пожаре приводит к различным повреждениям. Трещины в стыке ребер плиты с полкой возникают от разности температурных напряжений в сечениях элементов. Широко раскрытые трещины, расположенные в пролете изгибаемых элементов, свидетельствуют о снижении прочности рабочей арматуры или потере предварительных напряжений в ней. Беспорядочные температурно-усадочные трещины возникают на поверхности бетона, поврежденного огнем.

Влияние неглубоких трещин на прочность элементов менее значительно, чем на их долговечность.

Глубокие трещины в сжатой зоне указывают на снижение прочности железобетонных элементов. Продольные сквозные трещины вблизи углов элементов являются признаком отслоения защитного слоя бетона, наиболее поврежденного двухмерным потоком тепла. При простукивании защитный слой бетона не имеет хорошего сцепления с ядром сечения, глухо звучит и отслаивается. Продольные несквозные трещины в середине стороны сечения пронизывают защитный слой и являются следствием поперечного температурного расширения арматурного стержня. Глубокие, иногда сквозные трещины на стыке двух частей колонн свидетельствуют о значительных температурных перемещениях элементов покрытия и об аварийном состоянии надкрановых частей колонн после пожара.

Наиболее чувствительны к силовому и огневому воздействию консоли колонн.

В коротких консолях железобетонных колонн причиной образования трещин является срез бетона. В некоторых случаях трещины образуются вследствие неправильного конструирования или непроектного приложения нагрузки. В процессе огневого воздействия рабочее сечение колонны уменьшается, из-за чего вылет консоли (плечо приложения нагрузки) увеличивается.

Короткие консоли жестких узлов каркаса после огневого воздействия крупного пожара характеризуются образованием сквозных трещин, отколом защитного слоя бетона, оголением рабочей арматуры и (реже) образованием трещин, вызванных срезом бетона.

По материалам книги «Дефекты и повреждения строительных конструкций» Александра Васильева, к.т.н, доцента (Белорусский государственный университет транспорта, Гомель), члена технического комитета по стандартизации в области архитектуры и строительства

Усадка твердеющего бетона

Усадка твердеющего бетона происходит в период структурообразования бетона (в молодом бетоне) вследствие контракционной усадки.

Усадка твердеющего бетона, по сути, это усадка цементного камня. Начинается она после нескольких часов раннего твердения. Весьма значительная часть контракционной усадки развивается в молодом возрасте бетона, (примерно в пределах 7-10 суток). Практически вся усадка твердеющего бетона заканчивается к 28 суткам, при достижении бетоном марочной прочности.

Контракционная усадка

Контракционная усадка (химическая усадка, chemical shrinkage, autogenous shrinkage) – усадка в результате происходящих в цементном камне химических процессов взаимодействия исходных материалов. Происходит вследствие того, что портландцемент взаимодействует с водой (это явление называется гидратацией).

Гидратация цемента – химическая реакция цемента с водой с образованием кристаллогидратов. В процессе гидратации жидкий или пластичный цементный клей (цемент + вода) превращается в цементный камень. Первая стадия этого процесса называется загустеванием или схватыванием, вторая – упрочнением или твердением.

Вследствие гидратации образующиеся новые вещества (цементный камень) в объеме оказываются меньше, чем изначальные объемы портландцемента и воды, вместе взятых (цементного теста). Это уменьшение в объеме приводит к тому, что в структуре бетона возникает так называемая контракционная пористость, которая имеет положительный эффект для морозостойкости бетона и появляется контракционная усадка – отрицательное свойство бетона.

Происходит это следующим образом:

При затворении цемента водой из поверхностных слоев цементных зерен образуется рыхлая масса – коллоид, так называемый гель, склеивающий зерна цемента или же зерна песка и щебня. С образованием геля цементное тесто начинает густеть и терять пластичность. Этот процесс называется схватыванием.

Одновременно с твердением масса геля уплотняется. Количество воды в геле уменьшается, причем при твердении на воздухе испарение воды с поверхности тела значительно влияет на процесс твердения, ускоряя его в тех слоях, которые расположены ближе к наружной поверхности конструкции.

Но основная причина уменьшения воды в геле, сопровождающаяся его затвердением, заключается не в высыхании или испарении, а в так называемом «внутреннем отсасывании». Это значит, что еще неразложенные зерна цемента постепенно начинают гидратизироваться и, отсасывая воду из ранее образовавшегося геля, образуют новые массы геля. Таким образом коллоид геля постепенно обезвоживается, сжимается, твердеет и подобно обычному столярному клею значительно уменьшается в объеме и превращается в твердое тело, обладающее значительной прочностью – в цементный камень.

Это уменьшение объема, называемое «собственно усадкой бетона», является неизбежным спутником твердения цемента, независимо от того твердеет ли бетон на воздухе или в воде.

Отсасывание воды из окружающего геля продолжается до тех пор, пока зерна цемента не войдут полностью в реакцию. В цементе, измоломот не очень тонко, для этого требуются десятки лет, а в связи с этим длительно протекает и усадка бетона.

Как избежать усадки цементного камня?

Полностью избежать усадки цементного камня невозможно, так как продукты гидратации меньше объема исходных материалов. Исключение составляют лишь усадочные и расширяющиеся цементы.

Линейное изменение размеров при контракционной усадке составляет 1 мм на 1 м и в строительстве малоэтажных зданий обычно не учитывается.

Усадка бетона зрелого возраста

Усадка бетона зрелого возраста происходит после достижения проектного возраста (28 суток), в период эксплуатации. Длится в течении трех-четырех месяцев после заливки. В дальнейшем крайне замедляется.

Ранее для обеспечения прочности всего здания, монолитный фундамент перед нагружением длительное время (до года) выстаивался. Сейчас в этом нет необходимости, так как в современном малоэтажном домостроении применяют цемент определенных марок и различные специальные присадки.

Усадка бетона зрелого возраста происходит вследствие:

усадки при высыхании (влажностной усадки);

карбонизационной усадки.

Карбонизационная усадка

Карбонизационная усадка – усадка в результате химических процессов взаимодействия продуктов гидратации с проникающими из внешней среды компонентами. Связана с тем, что весь железобетон находится в среде углекислого газа.

Углекислый газ, проникая в структуру бетона, взаимодействуя с водой, образует так называемую угольную кислоту. Угольная кислота, в свою очередь, взаимодействуя с гидроксидом кальция, который есть в структуре цементного камня, образует карбонат кальция и воду.

Новообразованный материал в объеме получается меньше, чем изначальный. Кроме того, поскольку гидроксид кальция исчезает, происходит снижение показателя рH – показателя основности среды. А гидросиликаты кальция (основная часть цементного камня) очень чувствительны к этому показателю: когда рН начинает снижаться, они начинают перекристаллизовываться с выделением гидроксида кальция – чтобы спасти остальных, жертвуя частью себя. И это явление тоже приводит к небольшой усадке бетона.

Величина карбонизационной усадки существенно зависит от размеров образца, концентрации углекислого газа в воздухе, влажности бетона и относительной влажности воздуха. В ряде случаев по величине она может быть равна влажностной усадке.

Влажностная усадка

Влажностная усадка по мере твердения и высыхания бетона (усадка при высыхании, drying shrinkage) – усадка в результате физических и физико-химических процессов, вызывающих удаление воды (обезвоживание) из бетонной смеси в процессе твердения и высыхания.

Влажностная усадка при твердении и высыхании бетона (физико-механическая усадка) отличается от пластической влажностной усадки тем, что это прежде всего гидравлическая усадка, обусловленная действием капиллярных сил, возникающих в цементном камне при испарении воды из капилляров и удалении межкристаллической воды.

При удалении свободной, физически не связанной воды, находящейся в крупных порах и макрокапиллярах бетона (с радиусом, большим 0,1 мкм), усадочные деформации не возникают.

Влажностная усадка возникает после испарения свободной воды, когда из бетона начинает удаляться капиллярная и структурно связанная и адсорбированная вода. Удаление капиллярной воды, находящейся в мелких порах и микрокапиллярах с радиусом меньшим 0,1 мкм, вызывает капиллярную усадку, а удаление физически связанной воды из новообразований – адсорбционную усадку.

Влажностная усадка увеличивается при увеличении водосодержания бетонной смеси. Поэтому, чем меньше воды в составе бетонной смеси, тем меньше будет усадка. Снижение количества воды при сохранении подвижности бетонной смеси за счет применения суперпластификаторов – эффективный способ снижения усадки при высыхании.

Влажностная усадка при высыхании и карбонизационная усадка обычно протекают одновременно и продолжаются длительное время.

В зависимости от вида цемента, деформации влажностной усадки, связанной с высыханием в 5-10 раз больше, чем относительные деформации контракционной усадки цементного камня.

Влажностная усадка, возникающая по мере высыхания бетона, в наибольшей мере сказывается на поведении бетона в конструкциях.

Способы защиты от усадочного трещинообразования

Для того, чтобы не допустить усадочные трещины в бетоне, необходимо снизить усадку цементного камня, исключить пересыхание поверхностного слоя бетона, а для случая с массивными конструкциями – замедлить твердение. Подробнее об этом можно прочитать в статье “Уход за бетоном после бетонирования“.

Уменьшить величину усадки можно, если правильно подобрать параметры бетонной смеси, прежде всего ее подвижность, в то же время снизив водоцементное отношение.

Чтобы обеспечить необходимую подвижность бетонной смеси, особенно это касается смеси марки П3 и выше по удобоукладываемости, бетоны должны изготавливаться с обязательным применением водоредуцирующих добавок – пластификаторов. Пластификаторы и суперпластификаторы – это тот механизм, который позволяет получать высокоподвижные бетонные смеси и убирают проблемы с трещинами в бетоне. Кроме пластификаторов очень важно подобрать рецептуру, соотношение компонентов, чтобы было достаточно растворной части.

При сравнении бетонной смеси подвижностью П4 с применением суперпластификатора и без него:

– величина усадки через 7 суток твердения без пластификатора составила 2 см на 1 метр, что составляет 2%.

– при добавлении суперпластификатора величина усадки через 7 суток твердения составила 0,2 см на 1 м, что составляет 0,2%.

Еще один способ, позволяющий избежать усадочные трещины – вовлечение в бетон 4,5 ±1,5% воздуха (применение воздухововлекающей добавки – например, аэропласта). Воздушный пузырек в структуре цементного камня является ловушкой для развивающейся трещины. Как только трещина входит в пузырек, она останавливается. Дозировка воздухововлекающих добавок для тяжелых бетонов – 0,03÷ 0,15% от веса цемента в пересчете на сухое вещество, воздухововлечение – от 2 до 6%.

Не допустить пересыхание поверхностного слоя бетона можно за счет ряда технологических мер. Для получения бетона хорошего качества необходимо создать летом влажную, а зимой теплую и влажную среду для его твердения. После укладки бетонной смеси в летнее время ее поверхность должна быть защищена от высыхания, а в первые часы твердения и от дождя.

Для этой цели горизонтальные поверхности по окончании бетонирования укрывают влагоемкими материалами: слоем песка толщиной не менее 5 см, соломенными матами, опилками, рогожей, которые все время увлажняют. Можно для этих целей использовать полиэтиленовую пленку, покрывая ею бетонную поверхность после очередного полива.

Вертикальные стенки фундамента в первые дни защищает от высыхания опалубка, но ее также нужно увлажнять. После снятия опалубки боковые стенки фундамента следует поливать также, как и горизонтальную поверхность.

Срок поливки бетона: при температуре наружного воздуха выше 15ºС – не менее 15 дней; при температуре от 10 до 15ºС – не менее 10 дней. При более низкой температуре сроки поливки бетона устанавливаются на месте производства работ.

Самым простым является метод обработки конструкции пленкообразующим составом.

Для замедления процесса гидратации используются специальные добавки-замедлители. Без замедлителя процесс твердения идет более интенсивно, соответственно, более интенсивно идут усадочные процессы. Что в свою очередь ведет к повышенному трещинообразованию.

Трещины, образовавшиеся вдоль растянутой рабочей арматуры плит, балок и ферм

Может быть несколько причин образования таких трещин. Одна из них — большие усадочные напряжения в бетоне, вызванные недостаточным защитным слоем. Иногда усадочные трещины образуются из-за неправильно подобранного состава бетона или вследствие нарушения режима термообработки при изготовлении сборных изделий (отсутствие выдержки перед пропариванием или слишком быстрый подъем температуры).

Сами по себе усадочные трещины имеют, как правило, небольшую ширину раскрытия. Однако через них проникает паро-воздушная смесь или агрессивные жидкости и газы, которые вызывают коррозию арматуры — в этом главная опасность усадочных трещин.

Продукты же коррозии (ржавчина) занимают больший объем, чем металл, поэтому они распирают бетон и еще более увеличивают раскрытие трещин (подобные трещины иногда имеют характерные «ржавые» края).

ВАЖНО!!! «Если конструкция эксплуатируется на открытом воздухе, то в трещины попадает и атмосферная влага, которая при замерзании дополнительно разрывает бетон.»

⇒ Другая причина — коррозия арматуры, вызванная не внешним воздействием паров и агрессивных газов, а блуждающими токами или агрессивными солевыми добавками в бетон. Как и в первом случае, продукты коррозии, увеличиваясь в объеме, разрывают бетон. Степень опасности этого дефекта определяется, в первую очередь, степенью коррозии арматурной стали.

⇒ Третья причина — раскалывание бетона при отпуске напрягаемой арматуры. Наиболее опасны такие трещины в концевых участках конструкций, т.к. они увеличивают длину зоны передачи напряжений арматуры и ухудшают ее анкеровку в бетоне, снижая тем самым несущую способность опорных участков плит, балок и ферм.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: