Изготовление жаростойкого бетона своими руками


Общее описание

В большинстве случаев даже обычный бетон не требует дополнительной противопожарной защиты из-за его стойкости к возгоранию. Этот негорючий материал имеет медленную скорость передачи тепла. Структурная целостность остается неизменной под воздействием пламени.

Огнезащитные свойства жаропрочного бетона довольно просто понять. Основные компоненты этого материала: цемент (известняк, глина и гипс) и агрегатные химические элементы, которые делают его по факту жаростойким. Материал также имеет медленный темп передачи тепла, а это значит, что бетонные стены в доме выступают в качестве некой пожарной защиты, укрывая смежные комнаты от пламени и поддерживая свою структурную целостность, несмотря на воздействие жара от огня.

Какие же именно свойства бетона делают его жаропрочным: это способность материала оставаться твердым под воздействием огня, пока все вокруг горит. Определение огнестойкости строительного материала учитывает скорость теплопередачи и горючести этого материала при переменных условиях, таких как:

  • температура огня;
  • вентиляция;
  • источников топлива в здании.

В то время как бетонные стены обычно выдерживают до четырех часов экстремального давления огня, большинство деревянных стен упадут менее чем за час. Также важно заметить, что когда бетон горит, он не испускает токсические перегары, дым или жидкие частицы.

Стоит заметить, что не так часто можно встретить применение жаростойкого бетона при строительстве зданий. Как правило, этот материал необходим для постройки особых целей:

  • аварийные зоны в закрытых конструкциях (туннельные аварийные выходы);
  • общая улучшенная огнестойкость для инфраструктуры;
  • огнезащитное сооружение для членов правительства.

Основные свойства жаропрочного бетона

Существует ряд некоторых особенностей при изготовлении этого жаростойкого материала. Они заключаются в следующем:

  • достижение максимальной огнестойкости основано на составе используемых компонентов;
  • сопротивление может быть значительно увеличено путем использования специальных элементов;
  • использование специальных пластмассовых волокон (ПВ) значительно увеличивает сопротивление по отношению к огню;
  • использование отобранного песка повышает стойкость цементной матрицы.

Pereosnastka.ru

Виды термической резки бетона и железобетона

Категория:

Термическая резка

Виды термической резки бетона и железобетона

Бетон и железобетон режутся кислородным, прутково-кислород-ым, порошково-кислородным копьем, газопорошковой реактивной ггруей, порошково-кислородным резаком, плазменной струей и дугой косвенного действия.

Наиболее освоенной и широко применяемой в СССР является кзка железобетона кислородным копьем (рис. 1).

Копье представляет собой стальную трубку с наружным диаметром 10—60 мм и длиной 3—6 м с различным поперечным сечением, расто употребляются водогазопроводные трубы (ГОСТ 3262—75) F наружным диаметром 10,2 мм и более. Согласно стандарту водогазопроводные трубы подразделяются на легкие, обыкновенные и усиленные.

Для прожигания отверстий в бетоне целесообразно пользоваться усиленными трубами с увеличенной толщиной стенки. Для копья можно использовать трубки некруглых сечений: плоскоовальные (ГОСТ 8644—68), прямоугольные (ГОСТ 8645—68), звездообразные, крестообразные, каплевидные, ромбические и др. Возможно также применение трубки с заложенными внутрь прутками или обмотанной снаружи проволокой из низкоуглеродистой стали. Такое копье называют прутковым.

Рис. 1. Резка железобетона прутковым копьем: а — процесс резки, б — копье с сердечником из прутков, б — копье с тремя прихваченными наружными прутками, г — копье с проволочной навивкой; д — копье с сердечником из прутков и с проволочной наьивкой; 1 — трубка, 2 — пруток, 3 — проволочная навивка

Для зажигания копья в трубку подается кислород под давлением 0,5 кгс/см2. При этом рабочий торец копья нагревается сварочной дугой или газокислородным пламенем до температуры горения стали; время нагрева—5—10 с. Нагретый металл начинает окисляться (гореть), давление подаваемого кислорода повышается до рабочего, металл на конце трубы интенсивно горит, развивая температуру до 2000 °С.

Следует различать горение копья в свободном состоянии и горение копья в процессе прожигания или резки. Расход кислорода при свободном горении копья значительно меньше, чем при резке, поэтому и подача его соответственно должна меняться.

Ориентировочно для сгорания 1 кг низкоуглеродистой стали требуется 300 дм3 кислорода. Фактический расход кислорода при свободном горении копья составляет до 600 дм3 в зависимости от диаметра и толщины стенки трубки, диаметров стержней и их количества. Чем полнее обтекает кислородная струя торец копья, тем меньше затрачивается кислорода при свободном горении.

При прожигании бетона или железобетона копье с пламенем направляется в изделие с определенной силой. Под действием высокой температуры пламени копья и продольной силы, создаваемой резчиком, бетон плавится и разрушается.

При резке или прожигании железобетона копьем кислород расходуется не только на горение стали, но и на выдувание из области реза продуктов горения копья и плавления бетона.

При давлении кислорода в момент зажигания копья более 0,5 ат нагреваемый металл будет охлаждаться из-за сильного перепада давления, что затруднит зажигание копья. Только после воспламенения копья и достаточного углубления его в бетон давление кислорода повышают до рабочего.

В процессе прожигания копье прижимают горящим концом к бетону с достаточно большим усилием; углубляясь в бетон, оно образует приблизительно круглое отверстие. Вследствие испарения воды, а также из-за разности температурных деформаций цементного камня и зерен заполнителя бетон становится непрочным, в нем возникают трещины, рыхлость, выкрашивание частиц, что облегчает плавление и отрыв нерасплавленных частиц. Расплавленные и оторвавшиеся частицы бетона, продукты горения стали выдуваются наружу кислородом и парами, образуемыми при нагреве бетона, через зазор между копьем и стенками прожигаемого отверстия. Для лучшего удаления расплавленной и рыхлой массы из области реза необходимо периодически совершать копьем возвратно-поступательные и возвратно-вращательные движения. Величина продольного усилия должна быть максимально возможной для резчика. В то же время чрезмерное усилие, в особенности при большой толщине железобетона, когда нагретое докрасна копье на 1—2 м и более углублено в железобетон, может вызвать искривление копья и изменить направление образуемого отверстия. Ориентировочно величина усилия прижатия копья должна составлять от 5 до 10 кгс, а при прожигании глубоких отверстий, когда необходимо преодолевать сопротивление застывающих шлаков, усилие прижатия должно достигать 10—50 кгс.

Данные по прожиганию отверстий в железобетоне в горизонтальном положении, полученные в МИСИ, приведены в табл. 30 и 31.

Копьем размером 10X8 мм с сердечником из 8 прутков диаметром 2 мм можно прожигать отверстия в бетоне со скоростью 5 м/ч на глубину до 200 мм. С повышением толщины прожигаемого бетона диаметры трубы и прутков необходимо увеличивать.

При прожигании отверстий кислородным копьем изменение свойств и снижение прочности бетона от нагрева происходят в радиусе 30—200 мм пропорционально толщине прожигаемого бетона.

Скорость прожигания отверстий прутковым копьем в потолочном положении достигает 10 м/ч.

По сравнению с пневмоинструментом копье прожигает отверстие более чем в 4 раза быстрее, стоимость работ при этом значительно ниже.

Порошковое копье отличается от пруткового тем, что на место реза подается железный порошок или смесь его с каким-либо другим (например, алюминиевым), при сгорании порошка выделяется дополнительное тепло. Подача порошка (флюса) выполняется автоматизированным устройством, как в установках для кислородно-флюсовой резки. Это усложняет оборудование для резки порошковым копьем.

Резак для кислородно-флюсовой резки сталей может быть использован и для резки неметаллов. Однако пользоваться им удобно лишь при разделительной резке бетона толщиной до 400 мм.

Разделительную резку можно также осуществлять прутковым и порошковым копьями последовательным образованием ряда отверстий с последующим разрушением перемычек механическим способом.

Резка реактивной газовой струей находит применение для прожигания отверстий в горных породах и железобетоне.

В настоящее время созданы специальные горелки, в которых жидкое горючее (преимущественно керосин) в смеси с кислородом сжигается в топке; пламя выбрасывается через узкое отверстие со сверхзвуковой скоростью до 2000 м/с; температура пламени — 2500—2750° С. Эта струя нагревает поверхность обрабатываемого тела, а при подаче воды оно разрушается и частицы выносятся газами из зоны реза. Разделительная резка этим способом бетонных плит толщиной 100—150 мм происходит со скоростью 8—10 м/ч. Хороших результатов достигают при прожигании отверстий реактивной струей.

Прожигание отверстий диаметром до 100 мм в железобетонных плитах успешно осуществляется угольной дугой косвенного действия. Для этого применяют угольные электроды диаметром 50—100 мм и силу тока 500—1000 А. Необходимость пользоваться светофильтром для глаз снижает эффективность резки угольной дугой.

Применение термической резки бетона и железобетона необходимо для образования проемов в стенах и перекрытиях, круглых небольшого диаметра сквозных отверстий, срезки старых фундаментов для постройки новых под более мощное оборудование и в других случаях — вместо трудоемкой и дорогостоящей механичен ской резки, сопровождающейся вибрациями, разрушениями и сильным шумом.

Резка копьем по сравнению с другими видами является наиболее универсальной, позволяющей резать бетон и железобетон толщиной до 4 м в различных пространственных положениях как при ремонтных работах, так и в новом строительстве. При этом оборудование для резки относительно несложно.

Читать далее:

Краткие сведения о сталях

Статьи по теме:

pereosnastka.ru

Основные свойства

У такого строительного материала имеется ряд отличительных свойств. Среди основных особенностей таких бетонов следует выделить:

  • высокую огнеупорность;
  • повышенные эксплуатационные свойства;
  • прочность;
  • отсутствие необходимости использования дорогостоящего процесса обжига при производстве.

Описание жаропрочного бетона

В настоящее время огнеупорный бетон можно классифицировать по весу. Изготовить самостоятельно или заказать можно некоторые формы описываемого материала:

  • особо тяжелая;
  • легкая;
  • ячеистая;
  • тяжёлая.

Таким образом удается получить материал, который может выполнять конструкционную или теплоизоляционную функцию, что зависит от ингредиентного состава.

Поведение во время пожара

Капиллярная и интерстициальная вода начинает испаряться при температурах вокруг точки кипения воды (100 ºC). Цементная матрица начинает меняться при температуре около 700 ° C. Влияние заполнителей в основном зависит от их происхождения и начинается при температуре около 600 ° C.

Огнестойкость определена как способность структуры выполнить свои необходимые функции для определенной выдержки пожара и определенного периода (герметичности).

Огнестойкость относится к элементам здания, а не к самому материалу, но свойства материала влияют на производительность элемента, частью которого он является. В большинстве случаев температура огня быстро повышается в течение нескольких минут, что приводит к появлению взрывного споллинга, так как влага, присущая бетону, превращается в пар и расширяется.

Большинство бетонов содержат портландцемент или смешанный портландцемент, который начинает ухудшаться по отношению к температуре выше 300 °C и начинает терять структурные характеристики выше 600 °C. Конечно, глубина ослабленной бетонной стены может варьироваться от нескольких миллиметров до нескольких сантиметров в зависимости от продолжительности пожара и пиковых температур. Цемент глинозема, используемый для того, чтобы защитить тугоплавкие подкладки, достигая температуры 1 ‘600 °C, является лучшим возможным материалом в пожаре и обеспечивает превосходную жаростойкость при температуре около 1’ 000 ° C.

Влияние огня на бетон в значительной степени зависит от типа используемого грубого заполнителя. Бетон, содержащий карбонатные заполнители (включая известняк и доломит) и легкие заполнители (естественно происходящие или изготовленные путем расширения сланца, глины или шлака) сохраняют большую часть своей прочности на сжатие до 700 ° C. Однако бетон, содержащий кремнистые заполнители, такие как гранит, кварцит, сланцы и другие материалы, состоящие в основном из кремнезема, сохраняет только около 55% их прочности на сжатие при 700 ° C.

Повреждение бетона, вызванное пожаром, может варьироваться от незначительных косметических пятен до более серьезных повреждений, таких как внешнее растрескивание, расслоение и споллинг, внутренний микрокрак и химические изменения. Наиболее важным фактором является выбор компонентов.

Дифференциальное термальное движение между затиром цемента и композитом может стать причиной повреждения. Кварцит наиболее подвержен повреждению огнем путем растрескивания. Известняк показывает лучшую огнестойкость, подвергаясь воздействию пожара низкой температуры.

Влияние температурных воздействий на структуру бетона

Как изменяются акустические свойства бетона при пожаре?

Тепловая обработка бетона ускоряет реакции гидратации вяжущих веществ, повышает интенсивность нарастания структурной прочности, сокращает технологический цикл изготовления.

Для прогрева композиционного материала до 80 – 100˚C и выше используют различные установки тепловой обработки непрерывного и периодического принципа действия (автоклавы, камеры, кассетные формы). В качестве теплоносителя используют паровоздушную смесь, электромагнитное поле, электрический ток.

Выбор способа обработки зависит от экономических и технических показателей, установленной технологии изготовления.

На заводах ЖБИ широкое распространение нашёл метод тепловлажностной обработки (теплоноситель – паровоздушная смесь). Процесс разделен на три этапа — подогрев, выдержка, охлаждение. На первых двух этапах в камеру подаётся нагретый пар, на третьем этапе установку охлаждают и вентилируют, удаляя из бетона лишнюю влагу. Сложность физических процессов, несоблюдение технологических норм могут привести к образованию трещин и появлению деформаций.

Причины остаточных деформаций

  1. Сокращение сроков выдерживания смеси в естественных условиях перед загрузкой в установку (оптимальное время выдержки – 2 – 4 часа с момента формирования раствора, требуемая прочность состава – 0,3 – 0,5 МПа).
  2. Резкие температурные перепады в камере, не соответствующие установленным нормам.
  3. Ячеистый бетон в качестве основного состава (содержит большой процент воды).
  4. Большая площадь поперечного сечения изделия.
  5. Тепловыделение при твердении бетонной смеси.

Тепловыделение и калориметрический анализ

Взаимодействие воды с клинкерными минералами сопровождается выделением тепловой энергии. Вследствие этого температура бетона при начальном твердении повышается. Уровень повышения зависит от массивности конструкции и состава бетона. Процессу сопутствует тепловое расширение материала, превышающее усадку.

Неравномерный разогрев бетона, быстрое охлаждение поверхностных слоёв, сохранение высокой температуры внутри изделия приводит к возникновению растягивающих термических напряжений. Если они преодолевают собственную прочность бетона на растяжение, в нём образуются трещины.

Применительно к бетону количественное измерение выделенного тепла (калориметрия) – самый надёжный и точный метод экспериментального анализа. Он позволяет оценить кинетику процесса твердения, влияние на структуру и прочность бетона различных факторов. Исследование проводится в калориметрах трёх типов: изотермическом, термосном и адиабатическом.

  • Изотермический калориметр позволяет поддерживать постоянную температуру образцов бетона. Данные измерений тепловыделения, полученные таким способом, наиболее достоверные.
  • Термосный калориметр не может обеспечить изотермический температурный режим для образцов бетона, они твердеют в случайном режиме. Благодаря простоте устройства, способ используется довольно часто. Полученные данные методом специальных расчётов и вычислений переводят на изотермический режим твердения.
  • Адиабатический калориметр применяется редко и, как правило, для определения тепловыделения крупных массивов бетона.

Разрушение под действием высоких температур

При температуре свыше 200˚C в бетоне запускаются деструктивные процессы. Постепенное снижение прочности обусловлено дегидратацией материала и распадом связующих соединений. Степень разрушения находится в прямой зависимости от роста температурного интервала. Непрерывное нагревание цементного камня до 1200˚C приводит к снижению прочности опытных образцов бетона до 35 – 40 %. Портландцемент разрушается при температуре 800˚C. Повышает устойчивость бетона к температурным воздействиям введение в его состав различных минеральных добавок.

Огнестойкость бетона

Цементный камень и связующие материалы имеют различные показатели температурного коэффициента линейного расширения. Такое несоответствие в условиях пожара может привести к снижению несущей способности бетонных сооружений, появлению сквозных трещин, полному разрушению. Поэтому, предел огнестойкости – один из важных критериев бетонных конструкций.

Показатель измеряется временным промежутком, в течение которого сохраняются несущие и ограждающие функции сооружения. Определяется опытным путём, во время которого образцы бетона подвергаются температурному воздействию в специальной установке. Соответствует двум – пяти часам.

Огнеупорный бетон своими руками

Состав жаростойкого бетона включает в себя базовые компоненты и некоторые добавки. Можно сделать свой собственный огнеупорный бетон с материалами, доступными в строительных магазинах. Если планируется построить блоки, то вам нужно иметь формы для блоков, приготовленные заранее. Огнеупорный цемент своими руками:

  1. Поместить лист фанеры в рабочую зону или тачку. Надо быть рядом со шлангом, чтобы воду можно было легко добавить в раствор или промыть инструменты.
  2. Разделить материалы в соотношении 3:2:2:0.5 (3 части гравия, 2 части песка, 2 части тугоплавкого цемента и 0,5 части оводненной известки). Соблюдать это соотношение независимо от объема огнеупорного бетона, который будет изготавливаться.
  3. Поместить гравий и песок в тачку или на фанеру.
  4. Добавить огнеупорный цемент и гидратированную известь поверх песка и гравия.
  5. Смешать все сухие ингредиенты с помощью лопаты. Мешать до тех пор, пока все компоненты не будут равномерно распределены, получив состав однородной консистенции. Сделать ямку в середине смеси для того, чтобы добавить воду.
  6. Добавить воду в смесь. Смешать сухие материалы и воду вместе, пока смесь не будет иметь никаких сухих комков. Не стоит добавлять слишком много воды, чтобы смесь не стала похожей на суп. Вода должна быть добавлена к смеси в количестве от 2 до 4 литров.
  7. Продолжать добавлять воду до тех пор, пока смесь не станет похожа на бетон. Если получается сделать из жмени бетона снежок, и он при этом не распадается, то все сделано правильно.
  8. Заполнить подготовленные формы бетоном при помощи лопаты.

Особенности сушки

Когда жаростойкий бетон своими руками готов, необходимо дать ему высохнуть. Здесь тоже потребуется соблюдать ряд некоторых правил:

  1. Распылить края и поверхность бетона водой с пульверизатора. Это предотвратит слишком быструю потерю влаги, пока смесь застывает.
  2. Накрыть бетон влажным пластиковым листом на 48 часов.
  3. Удалить пластик через 48 часов. Дать высохнуть на воздухе в течение как минимум 48 часов, прежде чем пытаться удалить форму. Если на улице несолнечно или температура воздуха низкая, надо дать бетону просохнуть на протяжении трех недель, прежде чем использовать по назначению.

Процесс набора прочности бетонных конструкций

Чтобы определить, до какой температуры можно заливать бетон, необходимо сначала хотя бы поверхностно рассмотреть особенности процесса набора прочности монолитом. Реакция начинает протекать между цементом/водой в момент затворения. В первые часы бетон еще текучий и с ним можно работать, но уже по прошествии нескольких часов он начинает застывать, становиться сначала более густым, а потом и вовсе твердым.

Процесс взаимодействия воды и цемента называется гидратацией. Гидратация проходит в два этапа: сначала смесь схватывается, потом твердеет. В схватывании задействованы алюминаты, появляются иглообразные кристаллы, связанные между собой. Через 6-10 часов эти кристаллы становятся своеобразным каркасом, скелетом. Бетон начинает твердеть.

Весь процесс схватывания может занимать от 20 минут до 20 часов, что напрямую зависит от температуры окружающего воздуха. Дольше всего процесс проходит в холодное время года – когда на улице около 0, схватываться бетон начинает через 6-10 часов, длится этап 15-20 часов.

В процессе твердения в реакцию с находящейся в растворе водой вступают клинкерные минералы, постепенно формируется силикатная структура. Реакция провоцирует появление мелких кристаллов, они объединяются в уникальную мелкопористую структуру. Это и есть бетон, который на протяжении 28 суток уже набирает марочную прочность и стойкость, не меняя формы и структуры.

Оптимальное значение температуры для стадии твердения также равно +20 градусам, влажность – до 100%.

Отклонения от параметров существенно влияют на прочность: полное созревание монолита длится несколько лет (но набор проектной прочности должен быть завершен через 28 суток после заливки), скорость твердения меняется со временем.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: